ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashnncl GIF version

Theorem hashnncl 10038
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
hashnncl (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))

Proof of Theorem hashnncl
StepHypRef Expression
1 simpr 108 . . 3 ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ)
2 nnne0 8343 . . . . 5 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0)
32adantl 271 . . . 4 ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≠ 0)
4 fihasheq0 10036 . . . . . 6 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
54necon3bid 2290 . . . . 5 (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
65adantr 270 . . . 4 ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
73, 6mpbid 145 . . 3 ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → 𝐴 ≠ ∅)
81, 72thd 173 . 2 ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
92necon2bi 2304 . . . 4 ((♯‘𝐴) = 0 → ¬ (♯‘𝐴) ∈ ℕ)
109adantl 271 . . 3 ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ (♯‘𝐴) ∈ ℕ)
114biimpa 290 . . . 4 ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → 𝐴 = ∅)
12 nner 2253 . . . 4 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
1311, 12syl 14 . . 3 ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ 𝐴 ≠ ∅)
1410, 132falsed 651 . 2 ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
15 hashcl 10023 . . 3 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
16 elnn0 8566 . . 3 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
1715, 16sylib 120 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
188, 14, 17mpjaodan 745 1 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  wne 2249  c0 3269  cfv 4968  Fincfn 6386  0cc0 7252  cn 8315  0cn0 8564  chash 10017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-addcom 7347  ax-addass 7349  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-0id 7355  ax-rnegex 7356  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-recs 6001  df-frec 6087  df-1o 6112  df-er 6221  df-en 6387  df-dom 6388  df-fin 6389  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-inn 8316  df-n0 8565  df-z 8646  df-uz 8914  df-fz 9319  df-ihash 10018
This theorem is referenced by:  1elfz0hash  10048
  Copyright terms: Public domain W3C validator