![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashnncl | GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ) | |
2 | nnne0 8949 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
3 | 2 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≠ 0) |
4 | fihasheq0 10775 | . . . . . 6 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
5 | 4 | necon3bid 2388 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
7 | 3, 6 | mpbid 147 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → 𝐴 ≠ ∅) |
8 | 1, 7 | 2thd 175 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
9 | 2 | necon2bi 2402 | . . . 4 ⊢ ((♯‘𝐴) = 0 → ¬ (♯‘𝐴) ∈ ℕ) |
10 | 9 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ (♯‘𝐴) ∈ ℕ) |
11 | 4 | biimpa 296 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → 𝐴 = ∅) |
12 | nner 2351 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ 𝐴 ≠ ∅) |
14 | 10, 13 | 2falsed 702 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
15 | hashcl 10763 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | elnn0 9180 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
17 | 15, 16 | sylib 122 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
18 | 8, 14, 17 | mpjaodan 798 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∅c0 3424 ‘cfv 5218 Fincfn 6742 0cc0 7813 ℕcn 8921 ℕ0cn0 9178 ♯chash 10757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-frec 6394 df-1o 6419 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-ihash 10758 |
This theorem is referenced by: 1elfz0hash 10788 |
Copyright terms: Public domain | W3C validator |