Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashnncl | GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ ℕ) | |
2 | nnne0 8885 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
3 | 2 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ≠ 0) |
4 | fihasheq0 10707 | . . . . . 6 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
5 | 4 | necon3bid 2377 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
6 | 5 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
7 | 3, 6 | mpbid 146 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → 𝐴 ≠ ∅) |
8 | 1, 7 | 2thd 174 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) ∈ ℕ) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
9 | 2 | necon2bi 2391 | . . . 4 ⊢ ((♯‘𝐴) = 0 → ¬ (♯‘𝐴) ∈ ℕ) |
10 | 9 | adantl 275 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ (♯‘𝐴) ∈ ℕ) |
11 | 4 | biimpa 294 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → 𝐴 = ∅) |
12 | nner 2340 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ¬ 𝐴 ≠ ∅) |
14 | 10, 13 | 2falsed 692 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (♯‘𝐴) = 0) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
15 | hashcl 10694 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | elnn0 9116 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
17 | 15, 16 | sylib 121 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
18 | 8, 14, 17 | mpjaodan 788 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 ‘cfv 5188 Fincfn 6706 0cc0 7753 ℕcn 8857 ℕ0cn0 9114 ♯chash 10688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-ihash 10689 |
This theorem is referenced by: 1elfz0hash 10719 |
Copyright terms: Public domain | W3C validator |