Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri24 | GIF version |
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri24 | ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnral 2447 | . 2 ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
2 | nnral 2447 | . . 3 ⊢ (¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
3 | 2 | ralimi 2520 | . 2 ⊢ (∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
4 | 1, 3 | syl 14 | 1 ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 ∀wral 2435 ⊆ wss 3102 Oncon0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-ral 2440 df-rex 2441 |
This theorem is referenced by: onntri2or 7164 |
Copyright terms: Public domain | W3C validator |