| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri24 | GIF version | ||
| Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri24 | ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnral 2487 | . 2 ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 2 | nnral 2487 | . . 3 ⊢ (¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 3 | 2 | ralimi 2560 | . 2 ⊢ (∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 4 | 1, 3 | syl 14 | 1 ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 ∀wral 2475 ⊆ wss 3157 Oncon0 4399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: onntri2or 7315 |
| Copyright terms: Public domain | W3C validator |