ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri24 GIF version

Theorem onntri24 7160
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri24 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))

Proof of Theorem onntri24
StepHypRef Expression
1 nnral 2447 . 2 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
2 nnral 2447 . . 3 (¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
32ralimi 2520 . 2 (∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
41, 3syl 14 1 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  wral 2435  wss 3102  Oncon0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-ral 2440  df-rex 2441
This theorem is referenced by:  onntri2or  7164
  Copyright terms: Public domain W3C validator