ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri24 GIF version

Theorem onntri24 7241
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri24 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))

Proof of Theorem onntri24
StepHypRef Expression
1 nnral 2467 . 2 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
2 nnral 2467 . . 3 (¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
32ralimi 2540 . 2 (∀𝑥 ∈ On ¬ ¬ ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
41, 3syl 14 1 (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708  wral 2455  wss 3130  Oncon0 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  onntri2or  7245
  Copyright terms: Public domain W3C validator