ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri24 Unicode version

Theorem onntri24 7254
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri24  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )

Proof of Theorem onntri24
StepHypRef Expression
1 nnral 2477 . 2  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  -.  -.  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
2 nnral 2477 . . 3  |-  ( -. 
-.  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
32ralimi 2550 . 2  |-  ( A. x  e.  On  -.  -.  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
41, 3syl 14 1  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709   A.wral 2465    C_ wss 3141   Oncon0 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-ral 2470  df-rex 2471
This theorem is referenced by:  onntri2or  7258
  Copyright terms: Public domain W3C validator