| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidontri2or | GIF version | ||
| Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| exmidontri2or | ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmidontriim 7292 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 2 | onelss 4422 | . . . . . . . 8 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
| 3 | 2 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | 
| 4 | orc 713 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) | 
| 6 | eqimss 3237 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 ⊆ 𝑦) | |
| 7 | 6, 4 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | 
| 8 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) | 
| 9 | onelss 4422 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
| 10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 11 | olc 712 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 12 | 10, 11 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) | 
| 13 | 5, 8, 12 | 3jaod 1315 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) | 
| 14 | 13 | ralimdva 2564 | . . . 4 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) | 
| 15 | 14 | ralimia 2558 | . . 3 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | 
| 16 | 1, 15 | syl 14 | . 2 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | 
| 17 | ontri2orexmidim 4608 | . . . 4 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝑧 = {∅}) | |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) | 
| 19 | 18 | exmid1dc 4233 | . 2 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → EXMID) | 
| 20 | 16, 19 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 {csn 3622 EXMIDwem 4227 Oncon0 4398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: onntri52 7311 | 
| Copyright terms: Public domain | W3C validator |