![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidontri2or | GIF version |
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
Ref | Expression |
---|---|
exmidontri2or | ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriim 7285 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
2 | onelss 4418 | . . . . . . . 8 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
3 | 2 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
4 | orc 713 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
6 | eqimss 3233 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 ⊆ 𝑦) | |
7 | 6, 4 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
8 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
9 | onelss 4418 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
11 | olc 712 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
12 | 10, 11 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
13 | 5, 8, 12 | 3jaod 1315 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
14 | 13 | ralimdva 2561 | . . . 4 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
15 | 14 | ralimia 2555 | . . 3 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
16 | 1, 15 | syl 14 | . 2 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
17 | ontri2orexmidim 4604 | . . . 4 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝑧 = {∅}) | |
18 | 17 | adantr 276 | . . 3 ⊢ ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) |
19 | 18 | exmid1dc 4229 | . 2 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → EXMID) |
20 | 16, 19 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 {csn 3618 EXMIDwem 4223 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-exmid 4224 df-iord 4397 df-on 4399 df-suc 4402 |
This theorem is referenced by: onntri52 7304 |
Copyright terms: Public domain | W3C validator |