Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontri2or | GIF version |
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
Ref | Expression |
---|---|
exmidontri2or | ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriim 7181 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
2 | onelss 4365 | . . . . . . . 8 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
3 | 2 | adantl 275 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
4 | orc 702 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
6 | eqimss 3196 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 ⊆ 𝑦) | |
7 | 6, 4 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
8 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
9 | onelss 4365 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
10 | 9 | adantr 274 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
11 | olc 701 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
12 | 10, 11 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
13 | 5, 8, 12 | 3jaod 1294 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
14 | 13 | ralimdva 2533 | . . . 4 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
15 | 14 | ralimia 2527 | . . 3 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
16 | 1, 15 | syl 14 | . 2 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
17 | ontri2orexmidim 4549 | . . . 4 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝑧 = {∅}) | |
18 | 17 | adantr 274 | . . 3 ⊢ ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) |
19 | 18 | exmid1dc 4179 | . 2 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → EXMID) |
20 | 16, 19 | impbii 125 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∅c0 3409 {csn 3576 EXMIDwem 4173 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: onntri52 7200 |
Copyright terms: Public domain | W3C validator |