ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or GIF version

Theorem exmidontri2or 7303
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontri2or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7285 . . 3 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2 onelss 4418 . . . . . . . 8 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
32adantl 277 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥𝑦))
4 orc 713 . . . . . . 7 (𝑥𝑦 → (𝑥𝑦𝑦𝑥))
53, 4syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → (𝑥𝑦𝑦𝑥)))
6 eqimss 3233 . . . . . . . 8 (𝑥 = 𝑦𝑥𝑦)
76, 4syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
87a1i 9 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
9 onelss 4418 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
109adantr 276 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥𝑦𝑥))
11 olc 712 . . . . . . 7 (𝑦𝑥 → (𝑥𝑦𝑦𝑥))
1210, 11syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
135, 8, 123jaod 1315 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝑥𝑦𝑦𝑥)))
1413ralimdva 2561 . . . 4 (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)))
1514ralimia 2555 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
161, 15syl 14 . 2 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
17 ontri2orexmidim 4604 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝑧 = {∅})
1817adantr 276 . . 3 ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
1918exmid1dc 4229 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → EXMID)
2016, 19impbii 126 1 (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  wral 2472  wss 3153  c0 3446  {csn 3618  EXMIDwem 4223  Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  onntri52  7304
  Copyright terms: Public domain W3C validator