ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or GIF version

Theorem exmidontri2or 7337
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontri2or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7319 . . 3 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2 onelss 4432 . . . . . . . 8 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
32adantl 277 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥𝑦))
4 orc 713 . . . . . . 7 (𝑥𝑦 → (𝑥𝑦𝑦𝑥))
53, 4syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → (𝑥𝑦𝑦𝑥)))
6 eqimss 3246 . . . . . . . 8 (𝑥 = 𝑦𝑥𝑦)
76, 4syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
87a1i 9 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
9 onelss 4432 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
109adantr 276 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥𝑦𝑥))
11 olc 712 . . . . . . 7 (𝑦𝑥 → (𝑥𝑦𝑦𝑥))
1210, 11syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
135, 8, 123jaod 1316 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝑥𝑦𝑦𝑥)))
1413ralimdva 2572 . . . 4 (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)))
1514ralimia 2566 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
161, 15syl 14 . 2 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
17 ontri2orexmidim 4618 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝑧 = {∅})
1817adantr 276 . . 3 ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
1918exmid1dc 4243 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → EXMID)
2016, 19impbii 126 1 (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1372  wcel 2175  wral 2483  wss 3165  c0 3459  {csn 3632  EXMIDwem 4237  Oncon0 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-exmid 4238  df-iord 4411  df-on 4413  df-suc 4416
This theorem is referenced by:  onntri52  7338
  Copyright terms: Public domain W3C validator