| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontri2or | GIF version | ||
| Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontri2or | ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidontriim 7353 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 2 | onelss 4442 | . . . . . . . 8 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
| 3 | 2 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
| 4 | orc 714 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 6 | eqimss 3251 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 ⊆ 𝑦) | |
| 7 | 6, 4 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 8 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 9 | onelss 4442 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
| 10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 11 | olc 713 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 12 | 10, 11 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 13 | 5, 8, 12 | 3jaod 1317 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 14 | 13 | ralimdva 2574 | . . . 4 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 15 | 14 | ralimia 2568 | . . 3 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 16 | 1, 15 | syl 14 | . 2 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 17 | ontri2orexmidim 4628 | . . . 4 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝑧 = {∅}) | |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) |
| 19 | 18 | exmid1dc 4252 | . 2 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → EXMID) |
| 20 | 16, 19 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ∅c0 3464 {csn 3638 EXMIDwem 4246 Oncon0 4418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-exmid 4247 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: onntri52 7375 |
| Copyright terms: Public domain | W3C validator |