ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or GIF version

Theorem exmidontri2or 7374
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontri2or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7353 . . 3 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2 onelss 4442 . . . . . . . 8 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
32adantl 277 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥𝑦))
4 orc 714 . . . . . . 7 (𝑥𝑦 → (𝑥𝑦𝑦𝑥))
53, 4syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → (𝑥𝑦𝑦𝑥)))
6 eqimss 3251 . . . . . . . 8 (𝑥 = 𝑦𝑥𝑦)
76, 4syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
87a1i 9 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
9 onelss 4442 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
109adantr 276 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥𝑦𝑥))
11 olc 713 . . . . . . 7 (𝑦𝑥 → (𝑥𝑦𝑦𝑥))
1210, 11syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
135, 8, 123jaod 1317 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝑥𝑦𝑦𝑥)))
1413ralimdva 2574 . . . 4 (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)))
1514ralimia 2568 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
161, 15syl 14 . 2 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
17 ontri2orexmidim 4628 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝑧 = {∅})
1817adantr 276 . . 3 ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
1918exmid1dc 4252 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → EXMID)
2016, 19impbii 126 1 (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  wral 2485  wss 3170  c0 3464  {csn 3638  EXMIDwem 4246  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-tr 4151  df-exmid 4247  df-iord 4421  df-on 4423  df-suc 4426
This theorem is referenced by:  onntri52  7375
  Copyright terms: Public domain W3C validator