ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or GIF version

Theorem exmidontri2or 7172
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontri2or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7154 . . 3 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2 onelss 4347 . . . . . . . 8 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
32adantl 275 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥𝑦))
4 orc 702 . . . . . . 7 (𝑥𝑦 → (𝑥𝑦𝑦𝑥))
53, 4syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 → (𝑥𝑦𝑦𝑥)))
6 eqimss 3182 . . . . . . . 8 (𝑥 = 𝑦𝑥𝑦)
76, 4syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
87a1i 9 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
9 onelss 4347 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
109adantr 274 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥𝑦𝑥))
11 olc 701 . . . . . . 7 (𝑦𝑥 → (𝑥𝑦𝑦𝑥))
1210, 11syl6 33 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
135, 8, 123jaod 1286 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝑥𝑦𝑦𝑥)))
1413ralimdva 2524 . . . 4 (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)))
1514ralimia 2518 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
161, 15syl 14 . 2 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
17 ontri2orexmidim 4530 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → DECID 𝑧 = {∅})
1817adantr 274 . . 3 ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
1918exmid1dc 4161 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → EXMID)
2016, 19impbii 125 1 (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3o 962   = wceq 1335  wcel 2128  wral 2435  wss 3102  c0 3394  {csn 3560  EXMIDwem 4155  Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-exmid 4156  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by:  onntri52  7173
  Copyright terms: Public domain W3C validator