| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontri2or | GIF version | ||
| Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontri2or | ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidontriim 7403 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 2 | onelss 4477 | . . . . . . . 8 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
| 3 | 2 | adantl 277 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
| 4 | orc 717 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 6 | eqimss 3278 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 ⊆ 𝑦) | |
| 7 | 6, 4 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 8 | 7 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 = 𝑦 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 9 | onelss 4477 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | |
| 10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 11 | olc 716 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
| 12 | 10, 11 | syl6 33 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 13 | 5, 8, 12 | 3jaod 1338 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 14 | 13 | ralimdva 2597 | . . . 4 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
| 15 | 14 | ralimia 2591 | . . 3 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 16 | 1, 15 | syl 14 | . 2 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| 17 | ontri2orexmidim 4663 | . . . 4 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝑧 = {∅}) | |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) |
| 19 | 18 | exmid1dc 4283 | . 2 ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → EXMID) |
| 20 | 16, 19 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 {csn 3666 EXMIDwem 4277 Oncon0 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-exmid 4278 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: onntri52 7425 |
| Copyright terms: Public domain | W3C validator |