ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 GIF version

Theorem onntri45 7170
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7155 . . . . 5 𝒫 1o ∈ On
21onsuci 4474 . . . 4 suc 𝒫 1o ∈ On
3 3on 6371 . . . 4 3o ∈ On
4 sseq1 3151 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 sseq2 3152 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ⊆ suc 𝒫 1o))
64, 5orbi12d 783 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
76notbid 657 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
87notbid 657 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
9 sseq2 3152 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ⊆ 3o))
10 sseq1 3151 . . . . . . . 8 (𝑦 = 3o → (𝑦 ⊆ suc 𝒫 1o ↔ 3o ⊆ suc 𝒫 1o))
119, 10orbi12d 783 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1211notbid 657 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1312notbid 657 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
148, 13rspc2v 2829 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
152, 3, 14mp2an 423 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o))
16 ioran 742 . . 3 (¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
1715, 16sylnib 666 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
18 sucpw1nss3 7164 . . 3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
19 3nsssucpw1 7165 . . 3 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
2018, 19jca 304 . 2 EXMID → (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
2117, 20nsyl 618 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1335  wcel 2128  wral 2435  wss 3102  𝒫 cpw 3543  EXMIDwem 4155  Oncon0 4323  suc csuc 4325  1oc1o 6353  3oc3o 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-exmid 4156  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-1o 6360  df-2o 6361  df-3o 6362
This theorem is referenced by:  onntri2or  7175
  Copyright terms: Public domain W3C validator