ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 GIF version

Theorem onntri45 7372
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7357 . . . . 5 𝒫 1o ∈ On
21onsuci 4572 . . . 4 suc 𝒫 1o ∈ On
3 3on 6526 . . . 4 3o ∈ On
4 sseq1 3220 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 sseq2 3221 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ⊆ suc 𝒫 1o))
64, 5orbi12d 795 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
76notbid 669 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
87notbid 669 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
9 sseq2 3221 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ⊆ 3o))
10 sseq1 3220 . . . . . . . 8 (𝑦 = 3o → (𝑦 ⊆ suc 𝒫 1o ↔ 3o ⊆ suc 𝒫 1o))
119, 10orbi12d 795 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1211notbid 669 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1312notbid 669 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
148, 13rspc2v 2894 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
152, 3, 14mp2an 426 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o))
16 ioran 754 . . 3 (¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
1715, 16sylnib 678 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
18 sucpw1nss3 7366 . . 3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
19 3nsssucpw1 7367 . . 3 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
2018, 19jca 306 . 2 EXMID → (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
2117, 20nsyl 629 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  wral 2485  wss 3170  𝒫 cpw 3621  EXMIDwem 4246  Oncon0 4418  suc csuc 4420  1oc1o 6508  3oc3o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892  df-tr 4151  df-exmid 4247  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-1o 6515  df-2o 6516  df-3o 6517
This theorem is referenced by:  onntri2or  7377
  Copyright terms: Public domain W3C validator