ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 GIF version

Theorem onntri45 7301
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7286 . . . . 5 𝒫 1o ∈ On
21onsuci 4548 . . . 4 suc 𝒫 1o ∈ On
3 3on 6480 . . . 4 3o ∈ On
4 sseq1 3202 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑥𝑦 ↔ suc 𝒫 1o𝑦))
5 sseq2 3203 . . . . . . . 8 (𝑥 = suc 𝒫 1o → (𝑦𝑥𝑦 ⊆ suc 𝒫 1o))
64, 5orbi12d 794 . . . . . . 7 (𝑥 = suc 𝒫 1o → ((𝑥𝑦𝑦𝑥) ↔ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
76notbid 668 . . . . . 6 (𝑥 = suc 𝒫 1o → (¬ (𝑥𝑦𝑦𝑥) ↔ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
87notbid 668 . . . . 5 (𝑥 = suc 𝒫 1o → (¬ ¬ (𝑥𝑦𝑦𝑥) ↔ ¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o)))
9 sseq2 3203 . . . . . . . 8 (𝑦 = 3o → (suc 𝒫 1o𝑦 ↔ suc 𝒫 1o ⊆ 3o))
10 sseq1 3202 . . . . . . . 8 (𝑦 = 3o → (𝑦 ⊆ suc 𝒫 1o ↔ 3o ⊆ suc 𝒫 1o))
119, 10orbi12d 794 . . . . . . 7 (𝑦 = 3o → ((suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1211notbid 668 . . . . . 6 (𝑦 = 3o → (¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
1312notbid 668 . . . . 5 (𝑦 = 3o → (¬ ¬ (suc 𝒫 1o𝑦𝑦 ⊆ suc 𝒫 1o) ↔ ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
148, 13rspc2v 2877 . . . 4 ((suc 𝒫 1o ∈ On ∧ 3o ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o)))
152, 3, 14mp2an 426 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o))
16 ioran 753 . . 3 (¬ (suc 𝒫 1o ⊆ 3o ∨ 3o ⊆ suc 𝒫 1o) ↔ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
1715, 16sylnib 677 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
18 sucpw1nss3 7295 . . 3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
19 3nsssucpw1 7296 . . 3 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
2018, 19jca 306 . 2 EXMID → (¬ suc 𝒫 1o ⊆ 3o ∧ ¬ 3o ⊆ suc 𝒫 1o))
2117, 20nsyl 629 1 (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥𝑦𝑦𝑥) → ¬ ¬ EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wral 2472  wss 3153  𝒫 cpw 3601  EXMIDwem 4223  Oncon0 4394  suc csuc 4396  1oc1o 6462  3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  onntri2or  7306
  Copyright terms: Public domain W3C validator