ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcotr GIF version

Theorem apcotr 7982
Description: Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apcotr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))

Proof of Theorem apcotr
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7385 . . 3 (𝐶 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
213ad2ant3 962 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
3 cnre 7385 . . . . . . 7 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
433ad2ant2 961 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
54ad2antrr 472 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
6 cnre 7385 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
763ad2ant1 960 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
87adantr 270 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
98ad3antrrr 476 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
10 simpr 108 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
11 simpllr 501 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤)))
1210, 11breq12d 3824 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
13 simplrl 502 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
14 simplrr 503 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
15 simprl 498 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ)
1615ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ)
17 simprr 499 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
1817ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ)
19 apreim 7978 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2013, 14, 16, 18, 19syl22anc 1171 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2112, 20bitrd 186 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
22 simprl 498 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑢 ∈ ℝ)
2322ad2antrr 472 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑢 ∈ ℝ)
2423ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℝ)
25 reapcotr 7973 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
2613, 16, 24, 25syl3anc 1170 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
27 simprr 499 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑣 ∈ ℝ)
2827ad2antrr 472 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑣 ∈ ℝ)
2928ad3antrrr 476 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℝ)
30 reapcotr 7973 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3114, 18, 29, 30syl3anc 1170 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3226, 31orim12d 733 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
3321, 32sylbid 148 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
34 or4 721 . . . . . . . . . . . 12 (((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣)) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣)))
3533, 34syl6ib 159 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
36 simplr 497 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝐶 = (𝑢 + (i · 𝑣)))
3736ad3antrrr 476 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐶 = (𝑢 + (i · 𝑣)))
3810, 37breq12d 3824 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣))))
39 apreim 7978 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4013, 14, 24, 29, 39syl22anc 1171 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4138, 40bitrd 186 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4211, 37breq12d 3824 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣))))
43 apreim 7978 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4416, 18, 24, 29, 43syl22anc 1171 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4542, 44bitrd 186 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4641, 45orbi12d 740 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 # 𝐶𝐵 # 𝐶) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
4735, 46sylibrd 167 . . . . . . . . . 10 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
4847ex 113 . . . . . . . . 9 (((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
4948rexlimdvva 2490 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
509, 49mpd 13 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5150ex 113 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5251rexlimdvva 2490 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
535, 52mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5453ex 113 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5554rexlimdvva 2490 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
562, 55mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 920   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3811  (class class class)co 5589  cc 7249  cr 7250  ici 7253   + caddc 7254   · cmul 7256   # cap 7956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-iota 4932  df-fun 4969  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-pnf 7425  df-mnf 7426  df-ltxr 7428  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957
This theorem is referenced by:  addext  7985  mulext  7989
  Copyright terms: Public domain W3C validator