ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcotr GIF version

Theorem apcotr 8287
Description: Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apcotr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))

Proof of Theorem apcotr
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7686 . . 3 (𝐶 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
213ad2ant3 987 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
3 cnre 7686 . . . . . . 7 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
433ad2ant2 986 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
54ad2antrr 477 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
6 cnre 7686 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
763ad2ant1 985 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
87adantr 272 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
98ad3antrrr 481 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
10 simpr 109 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
11 simpllr 506 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤)))
1210, 11breq12d 3908 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
13 simplrl 507 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
14 simplrr 508 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
15 simprl 503 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ)
1615ad3antrrr 481 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ)
17 simprr 504 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
1817ad3antrrr 481 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ)
19 apreim 8283 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2013, 14, 16, 18, 19syl22anc 1200 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2112, 20bitrd 187 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
22 simprl 503 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑢 ∈ ℝ)
2322ad2antrr 477 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑢 ∈ ℝ)
2423ad3antrrr 481 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℝ)
25 reapcotr 8278 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
2613, 16, 24, 25syl3anc 1199 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
27 simprr 504 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑣 ∈ ℝ)
2827ad2antrr 477 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑣 ∈ ℝ)
2928ad3antrrr 481 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℝ)
30 reapcotr 8278 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3114, 18, 29, 30syl3anc 1199 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3226, 31orim12d 758 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
3321, 32sylbid 149 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
34 or4 743 . . . . . . . . . . . 12 (((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣)) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣)))
3533, 34syl6ib 160 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
36 simplr 502 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝐶 = (𝑢 + (i · 𝑣)))
3736ad3antrrr 481 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐶 = (𝑢 + (i · 𝑣)))
3810, 37breq12d 3908 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣))))
39 apreim 8283 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4013, 14, 24, 29, 39syl22anc 1200 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4138, 40bitrd 187 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4211, 37breq12d 3908 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣))))
43 apreim 8283 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4416, 18, 24, 29, 43syl22anc 1200 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4542, 44bitrd 187 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4641, 45orbi12d 765 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 # 𝐶𝐵 # 𝐶) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
4735, 46sylibrd 168 . . . . . . . . . 10 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
4847ex 114 . . . . . . . . 9 (((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
4948rexlimdvva 2531 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
509, 49mpd 13 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5150ex 114 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5251rexlimdvva 2531 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
535, 52mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5453ex 114 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5554rexlimdvva 2531 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
562, 55mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680  w3a 945   = wceq 1314  wcel 1463  wrex 2391   class class class wbr 3895  (class class class)co 5728  cc 7545  cr 7546  ici 7549   + caddc 7550   · cmul 7552   # cap 8261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-ltxr 7729  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262
This theorem is referenced by:  addext  8290  mulext  8294  mul0eqap  8344
  Copyright terms: Public domain W3C validator