ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcotr GIF version

Theorem apcotr 8722
Description: Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apcotr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))

Proof of Theorem apcotr
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8110 . . 3 (𝐶 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
213ad2ant3 1025 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
3 cnre 8110 . . . . . . 7 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
433ad2ant2 1024 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
54ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
6 cnre 8110 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
763ad2ant1 1023 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
87adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
98ad3antrrr 492 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
10 simpr 110 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
11 simpllr 534 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤)))
1210, 11breq12d 4075 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
13 simplrl 535 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
14 simplrr 536 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
15 simprl 529 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ)
1615ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ)
17 simprr 531 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
1817ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ)
19 apreim 8718 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2013, 14, 16, 18, 19syl22anc 1253 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2112, 20bitrd 188 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
22 simprl 529 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑢 ∈ ℝ)
2322ad2antrr 488 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑢 ∈ ℝ)
2423ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℝ)
25 reapcotr 8713 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
2613, 16, 24, 25syl3anc 1252 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 → (𝑥 # 𝑢𝑧 # 𝑢)))
27 simprr 531 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑣 ∈ ℝ)
2827ad2antrr 488 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑣 ∈ ℝ)
2928ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℝ)
30 reapcotr 8713 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3114, 18, 29, 30syl3anc 1252 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 → (𝑦 # 𝑣𝑤 # 𝑣)))
3226, 31orim12d 790 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
3321, 32sylbid 150 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣))))
34 or4 775 . . . . . . . . . . . 12 (((𝑥 # 𝑢𝑧 # 𝑢) ∨ (𝑦 # 𝑣𝑤 # 𝑣)) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣)))
3533, 34imbitrdi 161 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
36 simplr 528 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝐶 = (𝑢 + (i · 𝑣)))
3736ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐶 = (𝑢 + (i · 𝑣)))
3810, 37breq12d 4075 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣))))
39 apreim 8718 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4013, 14, 24, 29, 39syl22anc 1253 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑢 + (i · 𝑣)) ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4138, 40bitrd 188 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐶 ↔ (𝑥 # 𝑢𝑦 # 𝑣)))
4211, 37breq12d 4075 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣))))
43 apreim 8718 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4416, 18, 24, 29, 43syl22anc 1253 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + (i · 𝑤)) # (𝑢 + (i · 𝑣)) ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4542, 44bitrd 188 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 # 𝐶 ↔ (𝑧 # 𝑢𝑤 # 𝑣)))
4641, 45orbi12d 797 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 # 𝐶𝐵 # 𝐶) ↔ ((𝑥 # 𝑢𝑦 # 𝑣) ∨ (𝑧 # 𝑢𝑤 # 𝑣))))
4735, 46sylibrd 169 . . . . . . . . . 10 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
4847ex 115 . . . . . . . . 9 (((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
4948rexlimdvva 2636 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
509, 49mpd 13 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5150ex 115 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5251rexlimdvva 2636 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
535, 52mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
5453ex 115 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
5554rexlimdvva 2636 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶))))
562, 55mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3a 983   = wceq 1375  wcel 2180  wrex 2489   class class class wbr 4062  (class class class)co 5974  cc 7965  cr 7966  ici 7969   + caddc 7970   · cmul 7972   # cap 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697
This theorem is referenced by:  addext  8725  mulext  8729  aptap  8765  mul0eqap  8785
  Copyright terms: Public domain W3C validator