ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor GIF version

Theorem dcor 930
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 830 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orc 707 . . . . . 6 (𝜑 → (𝜑𝜓))
32orcd 728 . . . . 5 (𝜑 → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 df-dc 830 . . . . 5 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
53, 4sylibr 133 . . . 4 (𝜑DECID (𝜑𝜓))
65a1d 22 . . 3 (𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
7 df-dc 830 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
8 olc 706 . . . . . . . . 9 (𝜓 → (𝜑𝜓))
98adantl 275 . . . . . . . 8 ((¬ 𝜑𝜓) → (𝜑𝜓))
109orcd 728 . . . . . . 7 ((¬ 𝜑𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1110, 4sylibr 133 . . . . . 6 ((¬ 𝜑𝜓) → DECID (𝜑𝜓))
12 ioran 747 . . . . . . . . 9 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
1312biimpri 132 . . . . . . . 8 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
1413olcd 729 . . . . . . 7 ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1514, 4sylibr 133 . . . . . 6 ((¬ 𝜑 ∧ ¬ 𝜓) → DECID (𝜑𝜓))
1611, 15jaodan 792 . . . . 5 ((¬ 𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑𝜓))
177, 16sylan2b 285 . . . 4 ((¬ 𝜑DECID 𝜓) → DECID (𝜑𝜓))
1817ex 114 . . 3 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
196, 18jaoi 711 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓DECID (𝜑𝜓)))
201, 19sylbi 120 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  pm4.55dc  933  orandc  934  pm3.12dc  953  pm3.13dc  954  dn1dc  955  eueq3dc  2904  distrlem4prl  7546  distrlem4pru  7547  exfzdc  10196  lcmmndc  12016  isprm3  12072  lgsval  13699  lgsfvalg  13700  lgsfcl2  13701  lgsval2lem  13705  lgsdir2  13728  lgsne0  13733  lgsdirnn0  13742  lgsdinn0  13743
  Copyright terms: Public domain W3C validator