Proof of Theorem dcor
Step | Hyp | Ref
| Expression |
1 | | df-dc 825 |
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
2 | | orc 702 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
3 | 2 | orcd 723 |
. . . . 5
⊢ (𝜑 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
4 | | df-dc 825 |
. . . . 5
⊢
(DECID (𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
5 | 3, 4 | sylibr 133 |
. . . 4
⊢ (𝜑 → DECID
(𝜑 ∨ 𝜓)) |
6 | 5 | a1d 22 |
. . 3
⊢ (𝜑 → (DECID
𝜓 → DECID
(𝜑 ∨ 𝜓))) |
7 | | df-dc 825 |
. . . . 5
⊢
(DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) |
8 | | olc 701 |
. . . . . . . . 9
⊢ (𝜓 → (𝜑 ∨ 𝜓)) |
9 | 8 | adantl 275 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ 𝜓) → (𝜑 ∨ 𝜓)) |
10 | 9 | orcd 723 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ 𝜓) → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
11 | 10, 4 | sylibr 133 |
. . . . . 6
⊢ ((¬
𝜑 ∧ 𝜓) → DECID (𝜑 ∨ 𝜓)) |
12 | | ioran 742 |
. . . . . . . . 9
⊢ (¬
(𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
13 | 12 | biimpri 132 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
14 | 13 | olcd 724 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
15 | 14, 4 | sylibr 133 |
. . . . . 6
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → DECID (𝜑 ∨ 𝜓)) |
16 | 11, 15 | jaodan 787 |
. . . . 5
⊢ ((¬
𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑 ∨ 𝜓)) |
17 | 7, 16 | sylan2b 285 |
. . . 4
⊢ ((¬
𝜑 ∧ DECID
𝜓) →
DECID (𝜑 ∨
𝜓)) |
18 | 17 | ex 114 |
. . 3
⊢ (¬
𝜑 →
(DECID 𝜓
→ DECID (𝜑 ∨ 𝜓))) |
19 | 6, 18 | jaoi 706 |
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
20 | 1, 19 | sylbi 120 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |