ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor GIF version

Theorem dcor 925
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 825 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orc 702 . . . . . 6 (𝜑 → (𝜑𝜓))
32orcd 723 . . . . 5 (𝜑 → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 df-dc 825 . . . . 5 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
53, 4sylibr 133 . . . 4 (𝜑DECID (𝜑𝜓))
65a1d 22 . . 3 (𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
7 df-dc 825 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
8 olc 701 . . . . . . . . 9 (𝜓 → (𝜑𝜓))
98adantl 275 . . . . . . . 8 ((¬ 𝜑𝜓) → (𝜑𝜓))
109orcd 723 . . . . . . 7 ((¬ 𝜑𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1110, 4sylibr 133 . . . . . 6 ((¬ 𝜑𝜓) → DECID (𝜑𝜓))
12 ioran 742 . . . . . . . . 9 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
1312biimpri 132 . . . . . . . 8 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
1413olcd 724 . . . . . . 7 ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1514, 4sylibr 133 . . . . . 6 ((¬ 𝜑 ∧ ¬ 𝜓) → DECID (𝜑𝜓))
1611, 15jaodan 787 . . . . 5 ((¬ 𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑𝜓))
177, 16sylan2b 285 . . . 4 ((¬ 𝜑DECID 𝜓) → DECID (𝜑𝜓))
1817ex 114 . . 3 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
196, 18jaoi 706 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓DECID (𝜑𝜓)))
201, 19sylbi 120 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  pm4.55dc  928  orandc  929  pm3.12dc  948  pm3.13dc  949  dn1dc  950  eueq3dc  2900  distrlem4prl  7525  distrlem4pru  7526  exfzdc  10175  lcmmndc  11994  isprm3  12050  lgsval  13545  lgsfvalg  13546  lgsfcl2  13547  lgsval2lem  13551  lgsdir2  13574  lgsne0  13579  lgsdirnn0  13588  lgsdinn0  13589
  Copyright terms: Public domain W3C validator