ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor GIF version

Theorem dcor 941
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 840 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orc 717 . . . . . 6 (𝜑 → (𝜑𝜓))
32orcd 738 . . . . 5 (𝜑 → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 df-dc 840 . . . . 5 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
53, 4sylibr 134 . . . 4 (𝜑DECID (𝜑𝜓))
65a1d 22 . . 3 (𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
7 df-dc 840 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
8 olc 716 . . . . . . . . 9 (𝜓 → (𝜑𝜓))
98adantl 277 . . . . . . . 8 ((¬ 𝜑𝜓) → (𝜑𝜓))
109orcd 738 . . . . . . 7 ((¬ 𝜑𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1110, 4sylibr 134 . . . . . 6 ((¬ 𝜑𝜓) → DECID (𝜑𝜓))
12 ioran 757 . . . . . . . . 9 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
1312biimpri 133 . . . . . . . 8 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
1413olcd 739 . . . . . . 7 ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1514, 4sylibr 134 . . . . . 6 ((¬ 𝜑 ∧ ¬ 𝜓) → DECID (𝜑𝜓))
1611, 15jaodan 802 . . . . 5 ((¬ 𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑𝜓))
177, 16sylan2b 287 . . . 4 ((¬ 𝜑DECID 𝜓) → DECID (𝜑𝜓))
1817ex 115 . . 3 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
196, 18jaoi 721 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓DECID (𝜑𝜓)))
201, 19sylbi 121 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  pm4.55dc  944  orandc  945  pm3.12dc  964  pm3.13dc  965  dn1dc  966  eueq3dc  2977  distrlem4prl  7779  distrlem4pru  7780  exfzdc  10454  lcmmndc  12592  isprm3  12648  perfectlem2  15682  lgsval  15691  lgsfvalg  15692  lgsfcl2  15693  lgsval2lem  15697  lgsdir2  15720  lgsne0  15725  lgsdirnn0  15734  lgsdinn0  15735  2lgs  15791  2lgsoddprm  15800  cndcap  16457
  Copyright terms: Public domain W3C validator