Proof of Theorem dcor
| Step | Hyp | Ref
| Expression |
| 1 | | df-dc 836 |
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
| 2 | | orc 713 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| 3 | 2 | orcd 734 |
. . . . 5
⊢ (𝜑 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
| 4 | | df-dc 836 |
. . . . 5
⊢
(DECID (𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
| 5 | 3, 4 | sylibr 134 |
. . . 4
⊢ (𝜑 → DECID
(𝜑 ∨ 𝜓)) |
| 6 | 5 | a1d 22 |
. . 3
⊢ (𝜑 → (DECID
𝜓 → DECID
(𝜑 ∨ 𝜓))) |
| 7 | | df-dc 836 |
. . . . 5
⊢
(DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) |
| 8 | | olc 712 |
. . . . . . . . 9
⊢ (𝜓 → (𝜑 ∨ 𝜓)) |
| 9 | 8 | adantl 277 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ 𝜓) → (𝜑 ∨ 𝜓)) |
| 10 | 9 | orcd 734 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ 𝜓) → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
| 11 | 10, 4 | sylibr 134 |
. . . . . 6
⊢ ((¬
𝜑 ∧ 𝜓) → DECID (𝜑 ∨ 𝜓)) |
| 12 | | ioran 753 |
. . . . . . . . 9
⊢ (¬
(𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 13 | 12 | biimpri 133 |
. . . . . . . 8
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
| 14 | 13 | olcd 735 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
| 15 | 14, 4 | sylibr 134 |
. . . . . 6
⊢ ((¬
𝜑 ∧ ¬ 𝜓) → DECID (𝜑 ∨ 𝜓)) |
| 16 | 11, 15 | jaodan 798 |
. . . . 5
⊢ ((¬
𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑 ∨ 𝜓)) |
| 17 | 7, 16 | sylan2b 287 |
. . . 4
⊢ ((¬
𝜑 ∧ DECID
𝜓) →
DECID (𝜑 ∨
𝜓)) |
| 18 | 17 | ex 115 |
. . 3
⊢ (¬
𝜑 →
(DECID 𝜓
→ DECID (𝜑 ∨ 𝜓))) |
| 19 | 6, 18 | jaoi 717 |
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
| 20 | 1, 19 | sylbi 121 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |