ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor GIF version

Theorem dcor 937
Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orc 713 . . . . . 6 (𝜑 → (𝜑𝜓))
32orcd 734 . . . . 5 (𝜑 → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 df-dc 836 . . . . 5 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
53, 4sylibr 134 . . . 4 (𝜑DECID (𝜑𝜓))
65a1d 22 . . 3 (𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
7 df-dc 836 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
8 olc 712 . . . . . . . . 9 (𝜓 → (𝜑𝜓))
98adantl 277 . . . . . . . 8 ((¬ 𝜑𝜓) → (𝜑𝜓))
109orcd 734 . . . . . . 7 ((¬ 𝜑𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1110, 4sylibr 134 . . . . . 6 ((¬ 𝜑𝜓) → DECID (𝜑𝜓))
12 ioran 753 . . . . . . . . 9 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
1312biimpri 133 . . . . . . . 8 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
1413olcd 735 . . . . . . 7 ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
1514, 4sylibr 134 . . . . . 6 ((¬ 𝜑 ∧ ¬ 𝜓) → DECID (𝜑𝜓))
1611, 15jaodan 798 . . . . 5 ((¬ 𝜑 ∧ (𝜓 ∨ ¬ 𝜓)) → DECID (𝜑𝜓))
177, 16sylan2b 287 . . . 4 ((¬ 𝜑DECID 𝜓) → DECID (𝜑𝜓))
1817ex 115 . . 3 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
196, 18jaoi 717 . 2 ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓DECID (𝜑𝜓)))
201, 19sylbi 121 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  pm4.55dc  940  orandc  941  pm3.12dc  960  pm3.13dc  961  dn1dc  962  eueq3dc  2938  distrlem4prl  7668  distrlem4pru  7669  exfzdc  10333  lcmmndc  12255  isprm3  12311  perfectlem2  15320  lgsval  15329  lgsfvalg  15330  lgsfcl2  15331  lgsval2lem  15335  lgsdir2  15358  lgsne0  15363  lgsdirnn0  15372  lgsdinn0  15373  2lgs  15429  2lgsoddprm  15438  cndcap  15790
  Copyright terms: Public domain W3C validator