| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.5 | GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 241 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 141 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imim21b 253 nfabdw 2358 elabgt 2905 sbceqal 3045 dffun8 5286 ordiso2 7101 indstr2 9683 dfgcd2 12181 |
| Copyright terms: Public domain | W3C validator |