Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.5 | GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 240 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 140 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imim21b 251 nfabdw 2331 elabgt 2871 sbceqal 3010 dffun8 5226 ordiso2 7012 indstr2 9568 dfgcd2 11969 |
Copyright terms: Public domain | W3C validator |