ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.5 GIF version

Theorem pm5.5 242
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.5 (𝜑 → ((𝜑𝜓) ↔ 𝜓))

Proof of Theorem pm5.5
StepHypRef Expression
1 biimt 241 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 141 1 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imim21b  253  nfabdw  2338  elabgt  2880  sbceqal  3020  dffun8  5246  ordiso2  7036  indstr2  9611  dfgcd2  12017
  Copyright terms: Public domain W3C validator