| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > indstr2 | GIF version | ||
| Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
| Ref | Expression |
|---|---|
| indstr2.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) |
| indstr2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| indstr2.3 | ⊢ 𝜒 |
| indstr2.4 | ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| Ref | Expression |
|---|---|
| indstr2 | ⊢ (𝑥 ∈ ℕ → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indstr2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | elnn1uz2 9748 | . . 3 ⊢ (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2))) | |
| 3 | indstr2.3 | . . . . 5 ⊢ 𝜒 | |
| 4 | nnnlt1 9082 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → ¬ 𝑦 < 1) | |
| 5 | 4 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1) |
| 6 | breq2 4055 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑦 < 𝑥 ↔ 𝑦 < 1)) | |
| 7 | 6 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ 𝑦 < 1)) |
| 8 | 5, 7 | mtbird 675 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥) |
| 9 | 8 | pm2.21d 620 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝜓)) |
| 10 | 9 | ralrimiva 2580 | . . . . . . 7 ⊢ (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓)) |
| 11 | pm5.5 242 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) | |
| 12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) |
| 13 | indstr2.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) | |
| 14 | 12, 13 | bitrd 188 | . . . . 5 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜒)) |
| 15 | 3, 14 | mpbiri 168 | . . . 4 ⊢ (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| 16 | indstr2.4 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
| 17 | 15, 16 | jaoi 718 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| 18 | 2, 17 | sylbi 121 | . 2 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| 19 | 1, 18 | indstr 9734 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 ‘cfv 5280 1c1 7946 < clt 8127 ℕcn 9056 2c2 9107 ℤ≥cuz 9668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |