![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indstr2 | GIF version |
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
Ref | Expression |
---|---|
indstr2.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) |
indstr2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
indstr2.3 | ⊢ 𝜒 |
indstr2.4 | ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
Ref | Expression |
---|---|
indstr2 | ⊢ (𝑥 ∈ ℕ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indstr2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | elnn1uz2 9637 | . . 3 ⊢ (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2))) | |
3 | indstr2.3 | . . . . 5 ⊢ 𝜒 | |
4 | nnnlt1 8975 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → ¬ 𝑦 < 1) | |
5 | 4 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1) |
6 | breq2 4022 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑦 < 𝑥 ↔ 𝑦 < 1)) | |
7 | 6 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ 𝑦 < 1)) |
8 | 5, 7 | mtbird 674 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥) |
9 | 8 | pm2.21d 620 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝜓)) |
10 | 9 | ralrimiva 2563 | . . . . . . 7 ⊢ (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓)) |
11 | pm5.5 242 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) |
13 | indstr2.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) | |
14 | 12, 13 | bitrd 188 | . . . . 5 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜒)) |
15 | 3, 14 | mpbiri 168 | . . . 4 ⊢ (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
16 | indstr2.4 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
17 | 15, 16 | jaoi 717 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
18 | 2, 17 | sylbi 121 | . 2 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
19 | 1, 18 | indstr 9623 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ∀wral 2468 class class class wbr 4018 ‘cfv 5235 1c1 7842 < clt 8022 ℕcn 8949 2c2 9000 ℤ≥cuz 9558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-inn 8950 df-2 9008 df-n0 9207 df-z 9284 df-uz 9559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |