![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indstr2 | GIF version |
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
Ref | Expression |
---|---|
indstr2.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) |
indstr2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
indstr2.3 | ⊢ 𝜒 |
indstr2.4 | ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
Ref | Expression |
---|---|
indstr2 | ⊢ (𝑥 ∈ ℕ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indstr2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | elnn1uz2 9675 | . . 3 ⊢ (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2))) | |
3 | indstr2.3 | . . . . 5 ⊢ 𝜒 | |
4 | nnnlt1 9010 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → ¬ 𝑦 < 1) | |
5 | 4 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1) |
6 | breq2 4034 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑦 < 𝑥 ↔ 𝑦 < 1)) | |
7 | 6 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ 𝑦 < 1)) |
8 | 5, 7 | mtbird 674 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥) |
9 | 8 | pm2.21d 620 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝜓)) |
10 | 9 | ralrimiva 2567 | . . . . . . 7 ⊢ (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓)) |
11 | pm5.5 242 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜑)) |
13 | indstr2.1 | . . . . . 6 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) | |
14 | 12, 13 | bitrd 188 | . . . . 5 ⊢ (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ 𝜒)) |
15 | 3, 14 | mpbiri 168 | . . . 4 ⊢ (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
16 | indstr2.4 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
17 | 15, 16 | jaoi 717 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ≥‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
18 | 2, 17 | sylbi 121 | . 2 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
19 | 1, 18 | indstr 9661 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 ‘cfv 5255 1c1 7875 < clt 8056 ℕcn 8984 2c2 9035 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |