![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elabgt | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2761.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elabgt | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2076 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | eleq1 2150 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
3 | 1, 2 | syl5bbr 192 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
4 | 3 | bibi1d 231 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
5 | 4 | biimpd 142 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
6 | 5 | a2i 11 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
7 | 6 | alimi 1389 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | nfcv 2228 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
9 | nfab1 2230 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
10 | 9 | nfel2 2241 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
11 | nfv 1466 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
12 | 10, 11 | nfbi 1526 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
13 | pm5.5 240 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) | |
14 | 8, 12, 13 | spcgf 2701 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
15 | 14 | imp 122 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
16 | 7, 15 | sylan2 280 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1287 = wceq 1289 ∈ wcel 1438 {cab 2074 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 |
This theorem is referenced by: elrab3t 2770 |
Copyright terms: Public domain | W3C validator |