| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabgt | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2949.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elabgt | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2217 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 2 | eleq1 2292 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 3 | 1, 2 | bitr3id 194 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| 4 | 3 | bibi1d 233 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 5 | 4 | biimpd 144 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 6 | 5 | a2i 11 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 7 | 6 | alimi 1501 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 8 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 9 | nfab1 2374 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 10 | 9 | nfel2 2385 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
| 11 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 12 | 10, 11 | nfbi 1635 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 13 | pm5.5 242 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) | |
| 14 | 8, 12, 13 | spcgf 2885 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
| 15 | 14 | imp 124 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 16 | 7, 15 | sylan2 286 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elrab3t 2958 |
| Copyright terms: Public domain | W3C validator |