ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun8 GIF version

Theorem dffun8 5282
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5281. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dffun8 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun8
StepHypRef Expression
1 dffun7 5281 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
2 df-mo 2046 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦))
3 vex 2763 . . . . . . 7 𝑥 ∈ V
43eldm 4859 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦)
5 pm5.5 242 . . . . . 6 (∃𝑦 𝑥𝐴𝑦 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦))
64, 5sylbi 121 . . . . 5 (𝑥 ∈ dom 𝐴 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦))
72, 6bitrid 192 . . . 4 (𝑥 ∈ dom 𝐴 → (∃*𝑦 𝑥𝐴𝑦 ↔ ∃!𝑦 𝑥𝐴𝑦))
87ralbiia 2508 . . 3 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
98anbi2i 457 . 2 ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
101, 9bitri 184 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  wral 2472   class class class wbr 4029  dom cdm 4659  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256
This theorem is referenced by:  funco  5294  funimaexglem  5337  funfveu  5567
  Copyright terms: Public domain W3C validator