Step | Hyp | Ref
| Expression |
1 | | ordsson 4451 |
. . . . . 6
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
2 | 1 | 3ad2ant2 1004 |
. . . . 5
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 ⊆ On) |
3 | 2 | sseld 3127 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
4 | | eleq1 2220 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
5 | | fveq2 5468 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
6 | | id 19 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
7 | 5, 6 | eqeq12d 2172 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑦) = 𝑦)) |
8 | 4, 7 | imbi12d 233 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥) ↔ (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
9 | 8 | imbi2d 229 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)))) |
10 | | r19.21v 2534 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
11 | | ordelss 4339 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
12 | 11 | 3ad2antl2 1145 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
13 | 12 | sselda 3128 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
14 | | pm5.5 241 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
15 | 13, 14 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
16 | 15 | ralbidva 2453 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) |
17 | | isof1o 5757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
18 | 17 | 3ad2ant1 1003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
19 | 18 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴–1-1-onto→𝐵) |
20 | | simpll3 1023 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → Ord 𝐵) |
21 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ (𝐹‘𝑥)) |
22 | | f1of 5414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
23 | 17, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
24 | 23 | 3ad2ant1 1003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴⟶𝐵) |
25 | 24 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴⟶𝐵) |
26 | | simplrl 525 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) |
27 | 25, 26 | ffvelrnd 5603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
28 | 21, 27 | jca 304 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) |
29 | | ordtr1 4348 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝐵 → ((𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑧 ∈ 𝐵)) |
30 | 20, 28, 29 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝐵) |
31 | | f1ocnvfv2 5728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
32 | 19, 30, 31 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
33 | 32, 21 | eqeltrd 2234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
34 | | simpll1 1021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹 Isom E , E (𝐴, 𝐵)) |
35 | | f1ocnv 5427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
36 | | f1of 5414 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
37 | 19, 35, 36 | 3syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ◡𝐹:𝐵⟶𝐴) |
38 | 37, 30 | ffvelrnd 5603 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝐴) |
39 | | isorel 5758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ ((◡𝐹‘𝑧) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
40 | 34, 38, 26, 39 | syl12anc 1218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
41 | | vex 2715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑥 ∈ V |
42 | 41 | epelc 4251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥) |
43 | 42 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥)) |
44 | | f1ofn 5415 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
45 | 17, 44 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) |
46 | | funfvex 5485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
47 | 46 | funfni 5270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
48 | 45, 47 | sylan 281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
49 | 34, 26, 48 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ V) |
50 | | epelg 4250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
51 | 49, 50 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
52 | 40, 43, 51 | 3bitr3d 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) ∈ 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
53 | 33, 52 | mpbird 166 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝑥) |
54 | | simplrr 526 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
55 | | fveq2 5468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
56 | | id 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → 𝑦 = (◡𝐹‘𝑧)) |
57 | 55, 56 | eqeq12d 2172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (◡𝐹‘𝑧) → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
58 | 57 | rspcv 2812 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑧) ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
59 | 53, 54, 58 | sylc 62 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧)) |
60 | 32, 59 | eqtr3d 2192 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 = (◡𝐹‘𝑧)) |
61 | 60, 53 | eqeltrd 2234 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝑥) |
62 | | simprr 522 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
63 | | fveq2 5468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
64 | | id 19 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
65 | 63, 64 | eqeq12d 2172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘𝑧) = 𝑧)) |
66 | 65 | rspccva 2815 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑥 (𝐹‘𝑦) = 𝑦 ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
67 | 62, 66 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
68 | | epel 4252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) |
69 | 68 | biimpri 132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → 𝑧 E 𝑥) |
70 | 69 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 E 𝑥) |
71 | | simpll1 1021 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
72 | | simpl2 986 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → Ord 𝐴) |
73 | | simprl 521 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ∈ 𝐴) |
74 | 72, 73, 11 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ⊆ 𝐴) |
75 | 74 | sselda 3128 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝐴) |
76 | | simplrl 525 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ 𝐴) |
77 | | isorel 5758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
78 | 71, 75, 76, 77 | syl12anc 1218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
79 | 70, 78 | mpbid 146 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) E (𝐹‘𝑥)) |
80 | 71, 76, 48 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑥) ∈ V) |
81 | | epelg 4250 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥))) |
82 | 80, 81 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥))) |
83 | 79, 82 | mpbid 146 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
84 | 67, 83 | eqeltrrd 2235 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝐹‘𝑥)) |
85 | 61, 84 | impbida 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ 𝑥)) |
86 | 85 | eqrdv 2155 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝐹‘𝑥) = 𝑥) |
87 | 86 | expr 373 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘𝑥) = 𝑥)) |
88 | 16, 87 | sylbid 149 |
. . . . . . . . . . 11
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥)) |
89 | 88 | ex 114 |
. . . . . . . . . 10
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥))) |
90 | 89 | com23 78 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
91 | 90 | a2i 11 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
92 | 91 | a1i 9 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
93 | 10, 92 | syl5bi 151 |
. . . . . 6
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
94 | 9, 93 | tfis2 4544 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
95 | 94 | com3l 81 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ On → (𝐹‘𝑥) = 𝑥))) |
96 | 3, 95 | mpdd 41 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) |
97 | 96 | ralrimiv 2529 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) |
98 | | fveq2 5468 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
99 | | id 19 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
100 | 98, 99 | eqeq12d 2172 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑧) = 𝑧)) |
101 | 100 | rspccva 2815 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑥 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
102 | 101 | adantll 468 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
103 | 23 | ffvelrnda 5602 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
104 | 103 | 3ad2antl1 1144 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
105 | 104 | adantlr 469 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
106 | 102, 105 | eqeltrrd 2235 |
. . . . 5
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
107 | 106 | ex 114 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) |
108 | | simpl1 985 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
109 | | f1ofo 5421 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
110 | | forn 5395 |
. . . . . . . . 9
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
111 | 17, 109, 110 | 3syl 17 |
. . . . . . . 8
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ran 𝐹 = 𝐵) |
112 | 108, 111 | syl 14 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → ran 𝐹 = 𝐵) |
113 | 112 | eleq2d 2227 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐵)) |
114 | 45 | 3ad2ant1 1003 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹 Fn 𝐴) |
115 | 114 | adantr 274 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Fn 𝐴) |
116 | | fvelrnb 5516 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
117 | 115, 116 | syl 14 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
118 | 113, 117 | bitr3d 189 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
119 | | fveq2 5468 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
120 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
121 | 119, 120 | eqeq12d 2172 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑤) = 𝑤)) |
122 | 121 | rspcv 2812 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤)) |
123 | 122 | a1i 9 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤))) |
124 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
125 | | simpl 108 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑤) |
126 | 124, 125 | eqtr3d 2192 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → 𝑧 = 𝑤) |
127 | 126 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 = 𝑤) |
128 | | simplr 520 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑤 ∈ 𝐴) |
129 | 127, 128 | eqeltrd 2234 |
. . . . . . . . . 10
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 ∈ 𝐴) |
130 | 129 | exp43 370 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑤 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
131 | 123, 130 | syldd 67 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
132 | 131 | com23 78 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
133 | 132 | imp 123 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴))) |
134 | 133 | rexlimdv 2573 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)) |
135 | 118, 134 | sylbid 149 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐴)) |
136 | 107, 135 | impbid 128 |
. . 3
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
137 | 136 | eqrdv 2155 |
. 2
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐴 = 𝐵) |
138 | 97, 137 | mpdan 418 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) |