| Step | Hyp | Ref
| Expression |
| 1 | | ordsson 4529 |
. . . . . 6
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
| 2 | 1 | 3ad2ant2 1021 |
. . . . 5
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 ⊆ On) |
| 3 | 2 | sseld 3183 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
| 4 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 5 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 6 | | id 19 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 7 | 5, 6 | eqeq12d 2211 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑦) = 𝑦)) |
| 8 | 4, 7 | imbi12d 234 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥) ↔ (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
| 9 | 8 | imbi2d 230 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)))) |
| 10 | | r19.21v 2574 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) ↔ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦))) |
| 11 | | ordelss 4415 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
| 12 | 11 | 3ad2antl2 1162 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | sselda 3184 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
| 14 | | pm5.5 242 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ (𝐹‘𝑦) = 𝑦)) |
| 16 | 15 | ralbidva 2493 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) |
| 17 | | isof1o 5857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 18 | 17 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 19 | 18 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴–1-1-onto→𝐵) |
| 20 | | simpll3 1040 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → Ord 𝐵) |
| 21 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ (𝐹‘𝑥)) |
| 22 | | f1of 5507 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 23 | 17, 22 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴⟶𝐵) |
| 24 | 23 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹:𝐴⟶𝐵) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹:𝐴⟶𝐵) |
| 26 | | simplrl 535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) |
| 27 | 25, 26 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ 𝐵) |
| 28 | 21, 27 | jca 306 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) |
| 29 | | ordtr1 4424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝐵 → ((𝑧 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑧 ∈ 𝐵)) |
| 30 | 20, 28, 29 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝐵) |
| 31 | | f1ocnvfv2 5828 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 32 | 19, 30, 31 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 33 | 32, 21 | eqeltrd 2273 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥)) |
| 34 | | simpll1 1038 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 35 | | f1ocnv 5520 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
| 36 | | f1of 5507 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
| 37 | 19, 35, 36 | 3syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ◡𝐹:𝐵⟶𝐴) |
| 38 | 37, 30 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝐴) |
| 39 | | isorel 5858 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ ((◡𝐹‘𝑧) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
| 40 | 34, 38, 26, 39 | syl12anc 1247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥))) |
| 41 | | vex 2766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑥 ∈ V |
| 42 | 41 | epelc 4327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥) |
| 43 | 42 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) E 𝑥 ↔ (◡𝐹‘𝑧) ∈ 𝑥)) |
| 44 | | f1ofn 5508 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| 45 | 17, 44 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹 Fn 𝐴) |
| 46 | | funfvex 5578 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
| 47 | 46 | funfni 5361 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 48 | 45, 47 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 49 | 34, 26, 48 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ V) |
| 50 | | epelg 4326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((𝐹‘(◡𝐹‘𝑧)) E (𝐹‘𝑥) ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
| 52 | 40, 43, 51 | 3bitr3d 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ((◡𝐹‘𝑧) ∈ 𝑥 ↔ (𝐹‘(◡𝐹‘𝑧)) ∈ (𝐹‘𝑥))) |
| 53 | 33, 52 | mpbird 167 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (◡𝐹‘𝑧) ∈ 𝑥) |
| 54 | | simplrr 536 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
| 55 | | fveq2 5561 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
| 56 | | id 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (◡𝐹‘𝑧) → 𝑦 = (◡𝐹‘𝑧)) |
| 57 | 55, 56 | eqeq12d 2211 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (◡𝐹‘𝑧) → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
| 58 | 57 | rspcv 2864 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑧) ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧))) |
| 59 | 53, 54, 58 | sylc 62 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → (𝐹‘(◡𝐹‘𝑧)) = (◡𝐹‘𝑧)) |
| 60 | 32, 59 | eqtr3d 2231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 = (◡𝐹‘𝑧)) |
| 61 | 60, 53 | eqeltrd 2273 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ (𝐹‘𝑥)) → 𝑧 ∈ 𝑥) |
| 62 | | simprr 531 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦) |
| 63 | | fveq2 5561 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 64 | | id 19 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
| 65 | 63, 64 | eqeq12d 2211 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) = 𝑦 ↔ (𝐹‘𝑧) = 𝑧)) |
| 66 | 65 | rspccva 2867 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑥 (𝐹‘𝑦) = 𝑦 ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
| 67 | 62, 66 | sylan 283 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) = 𝑧) |
| 68 | | epel 4328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) |
| 69 | 68 | biimpri 133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → 𝑧 E 𝑥) |
| 70 | 69 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 E 𝑥) |
| 71 | | simpll1 1038 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 72 | | simpl2 1003 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → Ord 𝐴) |
| 73 | | simprl 529 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ∈ 𝐴) |
| 74 | 72, 73, 11 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → 𝑥 ⊆ 𝐴) |
| 75 | 74 | sselda 3184 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝐴) |
| 76 | | simplrl 535 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ 𝐴) |
| 77 | | isorel 5858 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
| 78 | 71, 75, 76, 77 | syl12anc 1247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝑧 E 𝑥 ↔ (𝐹‘𝑧) E (𝐹‘𝑥))) |
| 79 | 70, 78 | mpbid 147 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) E (𝐹‘𝑥)) |
| 80 | 71, 76, 48 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑥) ∈ V) |
| 81 | | epelg 4326 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥))) |
| 82 | 80, 81 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → ((𝐹‘𝑧) E (𝐹‘𝑥) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑥))) |
| 83 | 79, 82 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → (𝐹‘𝑧) ∈ (𝐹‘𝑥)) |
| 84 | 67, 83 | eqeltrrd 2274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ (𝐹‘𝑥)) |
| 85 | 61, 84 | impbida 596 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝑧 ∈ (𝐹‘𝑥) ↔ 𝑧 ∈ 𝑥)) |
| 86 | 85 | eqrdv 2194 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦)) → (𝐹‘𝑥) = 𝑥) |
| 87 | 86 | expr 375 |
. . . . . . . . . . . 12
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑦 → (𝐹‘𝑥) = 𝑥)) |
| 88 | 16, 87 | sylbid 150 |
. . . . . . . . . . 11
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥)) |
| 89 | 88 | ex 115 |
. . . . . . . . . 10
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝐹‘𝑥) = 𝑥))) |
| 90 | 89 | com23 78 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 91 | 90 | a2i 11 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 92 | 91 | a1i 9 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
| 93 | 10, 92 | biimtrid 152 |
. . . . . 6
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = 𝑦)) → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)))) |
| 94 | 9, 93 | tfis2 4622 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥))) |
| 95 | 94 | com3l 81 |
. . . 4
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ On → (𝐹‘𝑥) = 𝑥))) |
| 96 | 3, 95 | mpdd 41 |
. . 3
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = 𝑥)) |
| 97 | 96 | ralrimiv 2569 |
. 2
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) |
| 98 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 99 | | id 19 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
| 100 | 98, 99 | eqeq12d 2211 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑧) = 𝑧)) |
| 101 | 100 | rspccva 2867 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑥 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
| 102 | 101 | adantll 476 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝑧) |
| 103 | 23 | ffvelcdmda 5700 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 104 | 103 | 3ad2antl1 1161 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 105 | 104 | adantlr 477 |
. . . . . 6
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 106 | 102, 105 | eqeltrrd 2274 |
. . . . 5
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 107 | 106 | ex 115 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) |
| 108 | | simpl1 1002 |
. . . . . . . 8
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Isom E , E (𝐴, 𝐵)) |
| 109 | | f1ofo 5514 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| 110 | | forn 5486 |
. . . . . . . . 9
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| 111 | 17, 109, 110 | 3syl 17 |
. . . . . . . 8
⊢ (𝐹 Isom E , E (𝐴, 𝐵) → ran 𝐹 = 𝐵) |
| 112 | 108, 111 | syl 14 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → ran 𝐹 = 𝐵) |
| 113 | 112 | eleq2d 2266 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐵)) |
| 114 | 45 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐹 Fn 𝐴) |
| 115 | 114 | adantr 276 |
. . . . . . 7
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐹 Fn 𝐴) |
| 116 | | fvelrnb 5611 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 117 | 115, 116 | syl 14 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 118 | 113, 117 | bitr3d 190 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 ↔ ∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧)) |
| 119 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 120 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
| 121 | 119, 120 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑤) = 𝑤)) |
| 122 | 121 | rspcv 2864 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤)) |
| 123 | 122 | a1i 9 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝐹‘𝑤) = 𝑤))) |
| 124 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
| 125 | | simpl 109 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑤) |
| 126 | 124, 125 | eqtr3d 2231 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧) → 𝑧 = 𝑤) |
| 127 | 126 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 = 𝑤) |
| 128 | | simplr 528 |
. . . . . . . . . . 11
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑤 ∈ 𝐴) |
| 129 | 127, 128 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ ((((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑤 ∈ 𝐴) ∧ ((𝐹‘𝑤) = 𝑤 ∧ (𝐹‘𝑤) = 𝑧)) → 𝑧 ∈ 𝐴) |
| 130 | 129 | exp43 372 |
. . . . . . . . 9
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑤 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 131 | 123, 130 | syldd 67 |
. . . . . . . 8
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 132 | 131 | com23 78 |
. . . . . . 7
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥 → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)))) |
| 133 | 132 | imp 124 |
. . . . . 6
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑤 ∈ 𝐴 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴))) |
| 134 | 133 | rexlimdv 2613 |
. . . . 5
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (∃𝑤 ∈ 𝐴 (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐴)) |
| 135 | 118, 134 | sylbid 150 |
. . . 4
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐴)) |
| 136 | 107, 135 | impbid 129 |
. . 3
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) |
| 137 | 136 | eqrdv 2194 |
. 2
⊢ (((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑥) → 𝐴 = 𝐵) |
| 138 | 97, 137 | mpdan 421 |
1
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) |