ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqal GIF version

Theorem sbceqal 2916
Description: A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
Assertion
Ref Expression
sbceqal (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sbceqal
StepHypRef Expression
1 spsbc 2873 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵)))
2 sbcimg 2902 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵)))
3 eqid 2100 . . . . 5 𝐴 = 𝐴
4 eqsbc3 2900 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴𝐴 = 𝐴))
53, 4mpbiri 167 . . . 4 (𝐴𝑉[𝐴 / 𝑥]𝑥 = 𝐴)
6 pm5.5 241 . . . 4 ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
75, 6syl 14 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
8 eqsbc3 2900 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
92, 7, 83bitrd 213 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
101, 9sylibd 148 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1297   = wceq 1299  wcel 1448  [wsbc 2862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-sbc 2863
This theorem is referenced by:  sbeqalb  2917  snsssn  3635
  Copyright terms: Public domain W3C validator