| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceqal | GIF version | ||
| Description: A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbc 3009 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵))) | |
| 2 | sbcimg 3039 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵))) | |
| 3 | eqid 2204 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
| 4 | eqsbc1 3037 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
| 5 | 3, 4 | mpbiri 168 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝑥 = 𝐴) |
| 6 | pm5.5 242 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) |
| 8 | eqsbc1 3037 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 9 | 2, 7, 8 | 3bitrd 214 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 10 | 1, 9 | sylibd 149 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 = wceq 1372 ∈ wcel 2175 [wsbc 2997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sbc 2998 |
| This theorem is referenced by: sbeqalb 3054 snsssn 3801 |
| Copyright terms: Public domain | W3C validator |