ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqal GIF version

Theorem sbceqal 3084
Description: A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
Assertion
Ref Expression
sbceqal (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sbceqal
StepHypRef Expression
1 spsbc 3040 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵)))
2 sbcimg 3070 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵)))
3 eqid 2229 . . . . 5 𝐴 = 𝐴
4 eqsbc1 3068 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴𝐴 = 𝐴))
53, 4mpbiri 168 . . . 4 (𝐴𝑉[𝐴 / 𝑥]𝑥 = 𝐴)
6 pm5.5 242 . . . 4 ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
75, 6syl 14 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
8 eqsbc1 3068 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
92, 7, 83bitrd 214 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
101, 9sylibd 149 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wcel 2200  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbeqalb  3085  snsssn  3838
  Copyright terms: Public domain W3C validator