ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2mOLD GIF version

Theorem r19.2mOLD 3552
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1662). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3551 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r19.2mOLD ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.2mOLD
StepHypRef Expression
1 df-ral 2490 . . . 4 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 exintr 1658 . . . 4 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜑)))
31, 2sylbi 121 . . 3 (∀𝑥𝐴 𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜑)))
4 df-rex 2491 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
53, 4imbitrrdi 162 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝜑))
65impcom 125 1 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516  wcel 2177  wral 2485  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-ral 2490  df-rex 2491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator