ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2mOLD GIF version

Theorem r19.2mOLD 3496
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1626). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3495 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r19.2mOLD ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.2mOLD
StepHypRef Expression
1 df-ral 2449 . . . 4 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 exintr 1622 . . . 4 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜑)))
31, 2sylbi 120 . . 3 (∀𝑥𝐴 𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜑)))
4 df-rex 2450 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
53, 4syl6ibr 161 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝜑))
65impcom 124 1 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480  wcel 2136  wral 2444  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-ral 2449  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator