| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.2m | GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1652). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.) | 
| Ref | Expression | 
|---|---|
| r19.2m | ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | 1 | cbvexv 1933 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑧 𝑧 ∈ 𝐴) | 
| 3 | eleq1w 2257 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | cbvexv 1933 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) | 
| 5 | 2, 4 | bitri 184 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) | 
| 6 | df-ral 2480 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | exintr 1648 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 8 | 6, 7 | sylbi 121 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 9 | df-rex 2481 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 10 | 8, 9 | imbitrrdi 162 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝜑)) | 
| 11 | 10 | impcom 125 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | 
| 12 | 5, 11 | sylanbr 285 | 1 ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-clel 2192 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: intssunim 3896 riinm 3989 iinexgm 4187 xpiindim 4803 cnviinm 5211 eusvobj2 5908 iinerm 6666 suplocexprlemml 7783 rexfiuz 11154 r19.2uz 11158 climuni 11458 pc2dvds 12499 issubg4m 13323 cncnp2m 14467 | 
| Copyright terms: Public domain | W3C validator |