![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.2m | GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1638). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.) |
Ref | Expression |
---|---|
r19.2m | ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2238 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | 1 | cbvexv 1918 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑧 𝑧 ∈ 𝐴) |
3 | eleq1w 2238 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | cbvexv 1918 | . . 3 ⊢ (∃𝑧 𝑧 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
5 | 2, 4 | bitri 184 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
6 | df-ral 2460 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | exintr 1634 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
8 | 6, 7 | sylbi 121 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
9 | df-rex 2461 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
10 | 8, 9 | imbitrrdi 162 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝜑)) |
11 | 10 | impcom 125 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
12 | 5, 11 | sylanbr 285 | 1 ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-clel 2173 df-ral 2460 df-rex 2461 |
This theorem is referenced by: intssunim 3866 riinm 3959 iinexgm 4154 xpiindim 4764 cnviinm 5170 eusvobj2 5860 iinerm 6606 suplocexprlemml 7714 rexfiuz 10997 r19.2uz 11001 climuni 11300 pc2dvds 12328 issubg4m 13051 cncnp2m 13701 |
Copyright terms: Public domain | W3C validator |