ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.3rm GIF version

Theorem r19.3rm 3548
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.)
Hypothesis
Ref Expression
r19.3rm.1 𝑥𝜑
Assertion
Ref Expression
r19.3rm (∃𝑦 𝑦𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem r19.3rm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2267 . . 3 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
21cbvexv 1941 . 2 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
3 eleq1 2267 . . . 4 (𝑎 = 𝑥 → (𝑎𝐴𝑥𝐴))
43cbvexv 1941 . . 3 (∃𝑎 𝑎𝐴 ↔ ∃𝑥 𝑥𝐴)
5 biimt 241 . . . 4 (∃𝑥 𝑥𝐴 → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
6 df-ral 2488 . . . . 5 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
7 r19.3rm.1 . . . . . 6 𝑥𝜑
8719.23 1700 . . . . 5 (∀𝑥(𝑥𝐴𝜑) ↔ (∃𝑥 𝑥𝐴𝜑))
96, 8bitri 184 . . . 4 (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴𝜑))
105, 9bitr4di 198 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
114, 10sylbi 121 . 2 (∃𝑎 𝑎𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
122, 11sylbir 135 1 (∃𝑦 𝑦𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  wnf 1482  wex 1514  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-cleq 2197  df-clel 2200  df-ral 2488
This theorem is referenced by:  r19.28m  3549  r19.3rmv  3550  r19.27m  3555  indstr  9713
  Copyright terms: Public domain W3C validator