Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.32vdc | GIF version |
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
Ref | Expression |
---|---|
r19.32vdc | ⊢ (DECID 𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21v 2543 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | 1 | a1i 9 | . 2 ⊢ (DECID 𝜑 → (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) |
3 | dfordc 882 | . . 3 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓))) | |
4 | 3 | ralbidv 2466 | . 2 ⊢ (DECID 𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓))) |
5 | dfordc 882 | . 2 ⊢ (DECID 𝜑 → ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | |
6 | 2, 4, 5 | 3bitr4d 219 | 1 ⊢ (DECID 𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-nf 1449 df-ral 2449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |