Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.32r | GIF version |
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
r19.32r.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.32r | ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32r.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | orc 702 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 2 | a1d 22 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
4 | 1, 3 | alrimi 1510 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
5 | df-ral 2449 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | olc 701 | . . . . . 6 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
7 | 6 | imim2i 12 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
8 | 7 | alimi 1443 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
9 | 5, 8 | sylbi 120 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
10 | 4, 9 | jaoi 706 | . 2 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
11 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) | |
12 | 10, 11 | sylibr 133 | 1 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: r19.32vr 2614 |
Copyright terms: Public domain | W3C validator |