| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqreu | GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| eqreu.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqreu | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiim 2631 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑))) | |
| 2 | eqreu.1 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ceqsralv 2794 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑) ↔ 𝜓)) |
| 4 | 3 | anbi2d 464 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
| 5 | 1, 4 | bitrid 192 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
| 6 | reu6i 2955 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 7 | 6 | ex 115 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) → ∃!𝑥 ∈ 𝐴 𝜑)) |
| 8 | 5, 7 | sylbird 170 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑)) |
| 9 | 8 | 3impib 1203 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑) |
| 10 | 9 | 3com23 1211 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃!wreu 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |