![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqreu | GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqreu | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 2628 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑))) | |
2 | eqreu.1 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ceqsralv 2791 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑) ↔ 𝜓)) |
4 | 3 | anbi2d 464 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
5 | 1, 4 | bitrid 192 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
6 | reu6i 2951 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
7 | 6 | ex 115 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) → ∃!𝑥 ∈ 𝐴 𝜑)) |
8 | 5, 7 | sylbird 170 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑)) |
9 | 8 | 3impib 1203 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑) |
10 | 9 | 3com23 1211 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃!wreu 2474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-v 2762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |