Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqreu | GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqreu | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 2600 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑))) | |
2 | eqreu.1 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ceqsralv 2757 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑) ↔ 𝜓)) |
4 | 3 | anbi2d 460 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
5 | 1, 4 | syl5bb 191 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
6 | reu6i 2917 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
7 | 6 | ex 114 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) → ∃!𝑥 ∈ 𝐴 𝜑)) |
8 | 5, 7 | sylbird 169 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑)) |
9 | 8 | 3impib 1191 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑) |
10 | 9 | 3com23 1199 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃!wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |