ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreu GIF version

Theorem eqreu 2922
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
eqreu.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
eqreu ((𝐵𝐴𝜓 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqreu
StepHypRef Expression
1 ralbiim 2604 . . . . 5 (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝜑)))
2 eqreu.1 . . . . . . 7 (𝑥 = 𝐵 → (𝜑𝜓))
32ceqsralv 2761 . . . . . 6 (𝐵𝐴 → (∀𝑥𝐴 (𝑥 = 𝐵𝜑) ↔ 𝜓))
43anbi2d 461 . . . . 5 (𝐵𝐴 → ((∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝜑)) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓)))
51, 4syl5bb 191 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓)))
6 reu6i 2921 . . . . 5 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
76ex 114 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝜑𝑥 = 𝐵) → ∃!𝑥𝐴 𝜑))
85, 7sylbird 169 . . 3 (𝐵𝐴 → ((∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥𝐴 𝜑))
983impib 1196 . 2 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥𝐴 𝜑)
1093com23 1204 1 ((𝐵𝐴𝜓 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  ∃!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator