| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.27av | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.27av | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 2 | 1 | ralrimiv 2569 | . . 3 ⊢ (𝜓 → ∀𝑥 ∈ 𝐴 𝜓) |
| 3 | 2 | anim2i 342 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | r19.26 2623 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: r19.28av 2633 fimaxre2 11409 |
| Copyright terms: Public domain | W3C validator |