| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbi | GIF version | ||
| Description: Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.) |
| Ref | Expression |
|---|---|
| rexbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2538 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
| 2 | rsp 2554 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | rexbida 2502 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: rexrnmpo 6071 |
| Copyright terms: Public domain | W3C validator |