![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbi | GIF version |
Description: Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.) |
Ref | Expression |
---|---|
rexbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2521 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
2 | rsp 2537 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓))) | |
3 | 2 | imp 124 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | rexbida 2485 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2473 df-rex 2474 |
This theorem is referenced by: rexrnmpo 6013 |
Copyright terms: Public domain | W3C validator |