Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbii GIF version

Theorem raleqbii 2466
 Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1 𝐴 = 𝐵
raleqbii.2 (𝜓𝜒)
Assertion
Ref Expression
raleqbii (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)

Proof of Theorem raleqbii
StepHypRef Expression
1 raleqbii.1 . . . 4 𝐴 = 𝐵
21eleq2i 2221 . . 3 (𝑥𝐴𝑥𝐵)
3 raleqbii.2 . . 3 (𝜓𝜒)
42, 3imbi12i 238 . 2 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54ralbii2 2464 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)
 Colors of variables: wff set class Syntax hints:   ↔ wb 104   = wceq 1332   ∈ wcel 2125  ∀wral 2432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-17 1503  ax-ial 1511  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-cleq 2147  df-clel 2150  df-ral 2437 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator