ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbii2 GIF version

Theorem ralbii2 2500
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
Hypothesis
Ref Expression
ralbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
ralbii2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)

Proof of Theorem ralbii2
StepHypRef Expression
1 ralbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21albii 1481 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜓))
3 df-ral 2473 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 2473 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 212 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2160  wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460
This theorem depends on definitions:  df-bi 117  df-ral 2473
This theorem is referenced by:  raleqbii  2502  ralbiia  2504  ralrab  2913  raldifb  3290  raluz2  9597  ralrp  9693  isprm4  12137
  Copyright terms: Public domain W3C validator