ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 GIF version

Theorem rexbii2 2521
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1631 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 2494 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 2494 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 212 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1518  wcel 2180  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-4 1536  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-rex 2494
This theorem is referenced by:  rexeqbii  2523  rexbiia  2525  rexrab  2946  rexdifpr  3674  rexdifsn  3779  bnd2  4236  suplocsrlemb  7961  rexuz2  9744  rexrp  9840  rexuz3  11467  4sqexercise1  12887
  Copyright terms: Public domain W3C validator