ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbii2 GIF version

Theorem rexbii2 2477
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1593 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 2450 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 2450 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 211 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480  wcel 2136  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-rex 2450
This theorem is referenced by:  rexeqbii  2479  rexbiia  2481  rexrab  2889  rexdifpr  3604  rexdifsn  3708  bnd2  4152  suplocsrlemb  7747  rexuz2  9519  rexrp  9612  rexuz3  10932
  Copyright terms: Public domain W3C validator