![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexnalim | GIF version |
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
rexnalim | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2478 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
2 | exanaliim 1658 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | df-ral 2477 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | sylnibr 678 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | sylbi 121 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: nnral 2484 ralexim 2486 iundif2ss 3978 ixp0 6785 omniwomnimkv 7226 alzdvds 11996 pc2dvds 12468 isnsgrp 12989 nninfsellemeq 15504 |
Copyright terms: Public domain | W3C validator |