Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexnalim | GIF version |
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
rexnalim | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
2 | exanaliim 1640 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | df-ral 2453 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | sylnibr 672 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | sylbi 120 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: nnral 2460 ralexim 2462 iundif2ss 3938 ixp0 6709 omniwomnimkv 7143 alzdvds 11814 pc2dvds 12283 isnsgrp 12647 nninfsellemeq 14047 |
Copyright terms: Public domain | W3C validator |