ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexnalim GIF version

Theorem rexnalim 2494
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexnalim (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)

Proof of Theorem rexnalim
StepHypRef Expression
1 df-rex 2489 . 2 (∃𝑥𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝜑))
2 exanaliim 1669 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥𝐴𝜑))
3 df-ral 2488 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3sylnibr 678 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥𝐴 𝜑)
51, 4sylbi 121 1 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1370  wex 1514  wcel 2175  wral 2483  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  nnral  2495  ralexim  2497  iundif2ss  3992  ixp0  6808  omniwomnimkv  7251  alzdvds  12084  pc2dvds  12572  isnsgrp  13156  nninfsellemeq  15815
  Copyright terms: Public domain W3C validator