| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexnalim | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| rexnalim | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2491 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
| 2 | exanaliim 1671 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | df-ral 2490 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | 2, 3 | sylnibr 679 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: nnral 2497 ralexim 2499 iundif2ss 4002 ixp0 6836 omniwomnimkv 7290 alzdvds 12250 pc2dvds 12738 isnsgrp 13323 nninfsellemeq 16123 |
| Copyright terms: Public domain | W3C validator |