ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexnalim GIF version

Theorem rexnalim 2519
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexnalim (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)

Proof of Theorem rexnalim
StepHypRef Expression
1 df-rex 2514 . 2 (∃𝑥𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝜑))
2 exanaliim 1693 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥𝐴𝜑))
3 df-ral 2513 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3sylnibr 681 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥𝐴 𝜑)
51, 4sylbi 121 1 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1393  wex 1538  wcel 2200  wral 2508  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  nnral  2520  ralexim  2522  rexanaliim  2636  iundif2ss  4030  ixp0  6876  omniwomnimkv  7330  alzdvds  12360  pc2dvds  12848  isnsgrp  13434  umgr2edg1  16001  umgr2edgneu  16004  nninfsellemeq  16339
  Copyright terms: Public domain W3C validator