Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexnalim | GIF version |
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
rexnalim | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
2 | exanaliim 1635 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | df-ral 2449 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | 2, 3 | sylnibr 667 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | sylbi 120 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: nnral 2456 ralexim 2458 iundif2ss 3931 ixp0 6697 omniwomnimkv 7131 alzdvds 11792 pc2dvds 12261 nninfsellemeq 13894 |
Copyright terms: Public domain | W3C validator |