ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexnalim GIF version

Theorem rexnalim 2459
Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
rexnalim (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)

Proof of Theorem rexnalim
StepHypRef Expression
1 df-rex 2454 . 2 (∃𝑥𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝜑))
2 exanaliim 1640 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥𝐴𝜑))
3 df-ral 2453 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3sylnibr 672 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥𝐴 𝜑)
51, 4sylbi 120 1 (∃𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1346  wex 1485  wcel 2141  wral 2448  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-ral 2453  df-rex 2454
This theorem is referenced by:  nnral  2460  ralexim  2462  iundif2ss  3938  ixp0  6709  omniwomnimkv  7143  alzdvds  11814  pc2dvds  12283  isnsgrp  12647  nninfsellemeq  14047
  Copyright terms: Public domain W3C validator