| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexnalim | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| rexnalim | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2489 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑)) | |
| 2 | exanaliim 1669 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | df-ral 2488 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | 2, 3 | sylnibr 678 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜑) → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1370 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: nnral 2495 ralexim 2497 iundif2ss 3992 ixp0 6808 omniwomnimkv 7251 alzdvds 12084 pc2dvds 12572 isnsgrp 13156 nninfsellemeq 15815 |
| Copyright terms: Public domain | W3C validator |