| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimdv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | ralrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 4 | 1, 2, 3 | ralrimd 2608 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: ralrimdva 2610 ralrimivv 2611 nneneq 7018 fzrevral 10301 islss4 14346 topbas 14741 neipsm 14828 cnpnei 14893 metcnp3 15185 mpomulcn 15240 |
| Copyright terms: Public domain | W3C validator |