ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdv GIF version

Theorem ralrimdv 2470
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
Hypothesis
Ref Expression
ralrimdv.1 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
Assertion
Ref Expression
ralrimdv (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimdv
StepHypRef Expression
1 nfv 1476 . 2 𝑥𝜑
2 nfv 1476 . 2 𝑥𝜓
3 ralrimdv.1 . 2 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
41, 2, 3ralrimd 2469 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  wral 2375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-4 1455  ax-17 1474
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-ral 2380
This theorem is referenced by:  ralrimdva  2471  ralrimivv  2472  nneneq  6680  fzrevral  9726  topbas  12018  neipsm  12105  cnpnei  12169  metcnp3  12435
  Copyright terms: Public domain W3C validator