ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral GIF version

Theorem fzrevral 9878
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 109 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
2 elfzelz 9799 . . . . . . . . 9 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
3 fzrev 9857 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
43anassrs 397 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
52, 4sylan2 284 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
61, 5mpbid 146 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ (𝑀...𝑁))
7 rspsbc 2986 . . . . . . 7 ((𝐾𝑘) ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
86, 7syl 14 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
98ex 114 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1093impa 1176 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1110com23 78 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → [(𝐾𝑘) / 𝑗]𝜑)))
1211ralrimdv 2509 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
13 nfv 1508 . . . 4 𝑗 𝐾 ∈ ℤ
14 nfcv 2279 . . . . 5 𝑗((𝐾𝑁)...(𝐾𝑀))
15 nfsbc1v 2922 . . . . 5 𝑗[(𝐾𝑘) / 𝑗]𝜑
1614, 15nfralxy 2469 . . . 4 𝑗𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑
17 fzrev2i 9859 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)))
18 oveq2 5775 . . . . . . . . . 10 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
1918sbceq1d 2909 . . . . . . . . 9 (𝑘 = (𝐾𝑗) → ([(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2019rspcv 2780 . . . . . . . 8 ((𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2117, 20syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
22 zcn 9052 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
23 elfzelz 9799 . . . . . . . . . . 11 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
2423zcnd 9167 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℂ)
25 nncan 7984 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2622, 24, 25syl2an 287 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾 − (𝐾𝑗)) = 𝑗)
2726eqcomd 2143 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 = (𝐾 − (𝐾𝑗)))
28 sbceq1a 2913 . . . . . . . 8 (𝑗 = (𝐾 − (𝐾𝑗)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2927, 28syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
3021, 29sylibrd 168 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑))
3130ex 114 . . . . 5 (𝐾 ∈ ℤ → (𝑗 ∈ (𝑀...𝑁) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑)))
3231com23 78 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → (𝑗 ∈ (𝑀...𝑁) → 𝜑)))
3313, 16, 32ralrimd 2508 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
34333ad2ant3 1004 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
3512, 34impbid 128 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2414  [wsbc 2904  (class class class)co 5767  cc 7611  cmin 7926  cz 9047  ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by:  fzrevral2  9879  fzrevral3  9880  fzshftral  9881
  Copyright terms: Public domain W3C validator