ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral GIF version

Theorem fzrevral 9916
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 109 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
2 elfzelz 9837 . . . . . . . . 9 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
3 fzrev 9895 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
43anassrs 398 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
52, 4sylan2 284 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
61, 5mpbid 146 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ (𝑀...𝑁))
7 rspsbc 2995 . . . . . . 7 ((𝐾𝑘) ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
86, 7syl 14 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
98ex 114 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1093impa 1177 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1110com23 78 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → [(𝐾𝑘) / 𝑗]𝜑)))
1211ralrimdv 2514 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
13 nfv 1509 . . . 4 𝑗 𝐾 ∈ ℤ
14 nfcv 2282 . . . . 5 𝑗((𝐾𝑁)...(𝐾𝑀))
15 nfsbc1v 2931 . . . . 5 𝑗[(𝐾𝑘) / 𝑗]𝜑
1614, 15nfralxy 2474 . . . 4 𝑗𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑
17 fzrev2i 9897 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)))
18 oveq2 5790 . . . . . . . . . 10 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
1918sbceq1d 2918 . . . . . . . . 9 (𝑘 = (𝐾𝑗) → ([(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2019rspcv 2789 . . . . . . . 8 ((𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2117, 20syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
22 zcn 9083 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
23 elfzelz 9837 . . . . . . . . . . 11 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
2423zcnd 9198 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℂ)
25 nncan 8015 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2622, 24, 25syl2an 287 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾 − (𝐾𝑗)) = 𝑗)
2726eqcomd 2146 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 = (𝐾 − (𝐾𝑗)))
28 sbceq1a 2922 . . . . . . . 8 (𝑗 = (𝐾 − (𝐾𝑗)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2927, 28syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
3021, 29sylibrd 168 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑))
3130ex 114 . . . . 5 (𝐾 ∈ ℤ → (𝑗 ∈ (𝑀...𝑁) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑)))
3231com23 78 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → (𝑗 ∈ (𝑀...𝑁) → 𝜑)))
3313, 16, 32ralrimd 2513 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
34333ad2ant3 1005 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
3512, 34impbid 128 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  [wsbc 2913  (class class class)co 5782  cc 7642  cmin 7957  cz 9078  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  fzrevral2  9917  fzrevral3  9918  fzshftral  9919
  Copyright terms: Public domain W3C validator