ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral GIF version

Theorem fzrevral 10174
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 110 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
2 elfzelz 10094 . . . . . . . . 9 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
3 fzrev 10153 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
43anassrs 400 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
52, 4sylan2 286 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
61, 5mpbid 147 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ (𝑀...𝑁))
7 rspsbc 3069 . . . . . . 7 ((𝐾𝑘) ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
86, 7syl 14 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
98ex 115 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1093impa 1196 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
1110com23 78 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → [(𝐾𝑘) / 𝑗]𝜑)))
1211ralrimdv 2573 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
13 nfv 1539 . . . 4 𝑗 𝐾 ∈ ℤ
14 nfcv 2336 . . . . 5 𝑗((𝐾𝑁)...(𝐾𝑀))
15 nfsbc1v 3005 . . . . 5 𝑗[(𝐾𝑘) / 𝑗]𝜑
1614, 15nfralxy 2532 . . . 4 𝑗𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑
17 fzrev2i 10155 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)))
18 oveq2 5927 . . . . . . . . . 10 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
1918sbceq1d 2991 . . . . . . . . 9 (𝑘 = (𝐾𝑗) → ([(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2019rspcv 2861 . . . . . . . 8 ((𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2117, 20syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
22 zcn 9325 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
23 elfzelz 10094 . . . . . . . . . . 11 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
2423zcnd 9443 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℂ)
25 nncan 8250 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2622, 24, 25syl2an 289 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾 − (𝐾𝑗)) = 𝑗)
2726eqcomd 2199 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 = (𝐾 − (𝐾𝑗)))
28 sbceq1a 2996 . . . . . . . 8 (𝑗 = (𝐾 − (𝐾𝑗)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2927, 28syl 14 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
3021, 29sylibrd 169 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑))
3130ex 115 . . . . 5 (𝐾 ∈ ℤ → (𝑗 ∈ (𝑀...𝑁) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑)))
3231com23 78 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → (𝑗 ∈ (𝑀...𝑁) → 𝜑)))
3313, 16, 32ralrimd 2572 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
34333ad2ant3 1022 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
3512, 34impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  [wsbc 2986  (class class class)co 5919  cc 7872  cmin 8192  cz 9320  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fzrevral2  10175  fzrevral3  10176  fzshftral  10177
  Copyright terms: Public domain W3C validator