| Step | Hyp | Ref
 | Expression | 
| 1 |   | fnmap 6714 | 
. . 3
⊢ 
↑𝑚 Fn (V × V) | 
| 2 |   | elex 2774 | 
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | 
| 3 | 2 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ V) | 
| 4 |   | elex 2774 | 
. . . . 5
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | 
| 5 | 4 | 3ad2ant2 1021 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ V) | 
| 6 |   | fnovex 5955 | 
. . . 4
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑𝑚 𝐵) ∈ V) | 
| 7 | 1, 3, 5, 6 | mp3an2i 1353 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 𝐵) ∈ V) | 
| 8 |   | elex 2774 | 
. . . 4
⊢ (𝐶 ∈ 𝑋 → 𝐶 ∈ V) | 
| 9 | 8 | 3ad2ant3 1022 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ V) | 
| 10 |   | fnovex 5955 | 
. . 3
⊢ ((
↑𝑚 Fn (V × V) ∧ (𝐴 ↑𝑚 𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴 ↑𝑚
𝐵)
↑𝑚 𝐶) ∈ V) | 
| 11 | 1, 7, 9, 10 | mp3an2i 1353 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∈
V) | 
| 12 |   | xpexg 4777 | 
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) | 
| 13 | 12 | 3adant1 1017 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) | 
| 14 |   | fnovex 5955 | 
. . 3
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ (𝐵 × 𝐶) ∈ V) → (𝐴 ↑𝑚 (𝐵 × 𝐶)) ∈ V) | 
| 15 | 1, 3, 13, 14 | mp3an2i 1353 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐵 × 𝐶)) ∈ V) | 
| 16 |   | elmapi 6729 | 
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) → 𝑓:𝐶⟶(𝐴 ↑𝑚 𝐵)) | 
| 17 | 16 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦) ∈ (𝐴 ↑𝑚 𝐵)) | 
| 18 |   | elmapi 6729 | 
. . . . . . . . 9
⊢ ((𝑓‘𝑦) ∈ (𝐴 ↑𝑚 𝐵) → (𝑓‘𝑦):𝐵⟶𝐴) | 
| 19 | 17, 18 | syl 14 | 
. . . . . . . 8
⊢ ((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦):𝐵⟶𝐴) | 
| 20 | 19 | ffvelcdmda 5697 | 
. . . . . . 7
⊢ (((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) | 
| 21 | 20 | an32s 568 | 
. . . . . 6
⊢ (((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) | 
| 22 | 21 | ralrimiva 2570 | 
. . . . 5
⊢ ((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) | 
| 23 | 22 | ralrimiva 2570 | 
. . . 4
⊢ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) | 
| 24 |   | eqid 2196 | 
. . . . 5
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) | 
| 25 | 24 | fmpo 6259 | 
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴) | 
| 26 | 23, 25 | sylib 122 | 
. . 3
⊢ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴) | 
| 27 |   | simp1 999 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ 𝑉) | 
| 28 | 27, 13 | elmapd 6721 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)) | 
| 29 | 26, 28 | imbitrrid 156 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) | 
| 30 |   | elmapi 6729 | 
. . . . . . . . 9
⊢ (𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)) → 𝑔:(𝐵 × 𝐶)⟶𝐴) | 
| 31 | 30 | adantl 277 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) → 𝑔:(𝐵 × 𝐶)⟶𝐴) | 
| 32 |   | fovcdm 6066 | 
. . . . . . . . . 10
⊢ ((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) ∈ 𝐴) | 
| 33 | 32 | 3expa 1205 | 
. . . . . . . . 9
⊢ (((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) ∈ 𝐴) | 
| 34 | 33 | an32s 568 | 
. . . . . . . 8
⊢ (((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → (𝑥𝑔𝑦) ∈ 𝐴) | 
| 35 | 31, 34 | sylanl1 402 | 
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → (𝑥𝑔𝑦) ∈ 𝐴) | 
| 36 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) | 
| 37 | 35, 36 | fmptd 5716 | 
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) | 
| 38 |   | elmapg 6720 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) | 
| 39 | 38 | 3adant3 1019 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) | 
| 40 | 39 | ad2antrr 488 | 
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) | 
| 41 | 37, 40 | mpbird 167 | 
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑𝑚 𝐵)) | 
| 42 |   | eqid 2196 | 
. . . . 5
⊢ (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 43 | 41, 42 | fmptd 5716 | 
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑𝑚 𝐵)) | 
| 44 | 43 | ex 115 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑𝑚 𝐵))) | 
| 45 |   | simp3 1001 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) | 
| 46 | 7, 45 | elmapd 6721 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ↔ (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑𝑚 𝐵))) | 
| 47 | 44, 46 | sylibrd 169 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶))) | 
| 48 |   | elmapfn 6730 | 
. . . . . . . 8
⊢ (𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)) → 𝑔 Fn (𝐵 × 𝐶)) | 
| 49 | 48 | ad2antll 491 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑔 Fn (𝐵 × 𝐶)) | 
| 50 |   | fnovim 6031 | 
. . . . . . 7
⊢ (𝑔 Fn (𝐵 × 𝐶) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) | 
| 51 | 49, 50 | syl 14 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) | 
| 52 |   | simp3 1001 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐶) | 
| 53 | 37 | adantlrl 482 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) | 
| 54 | 53 | 3adant2 1018 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) | 
| 55 |   | simp1l2 1093 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝐵 ∈ 𝑊) | 
| 56 |   | simp1l1 1092 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | 
| 57 |   | fex2 5426 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) | 
| 58 | 54, 55, 56, 57 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) | 
| 59 | 42 | fvmpt2 5645 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 60 | 52, 58, 59 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 61 | 60 | fveq1d 5560 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥)) | 
| 62 |   | simp2 1000 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝑥 ∈ 𝐵) | 
| 63 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑥 ∈ V | 
| 64 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑔 ∈ V | 
| 65 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 66 |   | ovexg 5956 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ 𝑔 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑔𝑦) ∈ V) | 
| 67 | 63, 64, 65, 66 | mp3an 1348 | 
. . . . . . . . 9
⊢ (𝑥𝑔𝑦) ∈ V | 
| 68 | 36 | fvmpt2 5645 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥𝑔𝑦) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦)) | 
| 69 | 62, 67, 68 | sylancl 413 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦)) | 
| 70 | 61, 69 | eqtrd 2229 | 
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = (𝑥𝑔𝑦)) | 
| 71 | 70 | mpoeq3dva 5986 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) | 
| 72 | 51, 71 | eqtr4d 2232 | 
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 73 |   | eqid 2196 | 
. . . . . . 7
⊢ 𝐵 = 𝐵 | 
| 74 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐶 | 
| 75 |   | nfmpt1 4126 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) | 
| 76 | 74, 75 | nfmpt 4125 | 
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 77 | 76 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 78 |   | nfmpt1 4126 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 79 | 78 | nfeq2 2351 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) | 
| 80 |   | fveq1 5557 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑓‘𝑦) = ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)) | 
| 81 | 80 | fveq1d 5560 | 
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) | 
| 82 | 81 | a1d 22 | 
. . . . . . . . . . 11
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑦 ∈ 𝐶 → ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 83 | 79, 82 | ralrimi 2568 | 
. . . . . . . . . 10
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) | 
| 84 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ 𝐶 = 𝐶 | 
| 85 | 83, 84 | jctil 312 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 86 | 85 | a1d 22 | 
. . . . . . . 8
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥 ∈ 𝐵 → (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))) | 
| 87 | 77, 86 | ralrimi 2568 | 
. . . . . . 7
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑥 ∈ 𝐵 (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 88 |   | mpoeq123 5981 | 
. . . . . . 7
⊢ ((𝐵 = 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 89 | 73, 87, 88 | sylancr 414 | 
. . . . . 6
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) | 
| 90 | 89 | eqeq2d 2208 | 
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))) | 
| 91 | 72, 90 | syl5ibrcom 157 | 
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 92 | 16 | ad2antrl 490 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑓:𝐶⟶(𝐴 ↑𝑚 𝐵)) | 
| 93 | 92 | feqmptd 5614 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑓‘𝑦))) | 
| 94 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶)) | 
| 95 | 94, 19 | sylan 283 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦):𝐵⟶𝐴) | 
| 96 | 95 | feqmptd 5614 | 
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) | 
| 97 | 96 | mpteq2dva 4123 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → (𝑦 ∈ 𝐶 ↦ (𝑓‘𝑦)) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 98 | 93, 97 | eqtrd 2229 | 
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 99 |   | nfmpo2 5990 | 
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) | 
| 100 | 99 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑦 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) | 
| 101 |   | eqidd 2197 | 
. . . . . . . . 9
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → 𝐵 = 𝐵) | 
| 102 |   | nfmpo1 5989 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) | 
| 103 | 102 | nfeq2 2351 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) | 
| 104 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 | 
| 105 |   | vex 2766 | 
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V | 
| 106 | 105, 65 | fvex 5578 | 
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑦) ∈ V | 
| 107 | 106, 63 | fvex 5578 | 
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑦)‘𝑥) ∈ V | 
| 108 | 24 | ovmpt4g 6045 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ∧ ((𝑓‘𝑦)‘𝑥) ∈ V) → (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥)) | 
| 109 | 107, 108 | mp3an3 1337 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥)) | 
| 110 |   | oveq 5928 | 
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑥𝑔𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦)) | 
| 111 | 110 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ((𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥) ↔ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥))) | 
| 112 | 109, 111 | imbitrrid 156 | 
. . . . . . . . . . 11
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥))) | 
| 113 | 112 | expcomd 1452 | 
. . . . . . . . . 10
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → (𝑥 ∈ 𝐵 → (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥)))) | 
| 114 | 103, 104,
113 | ralrimd 2575 | 
. . . . . . . . 9
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥))) | 
| 115 |   | mpteq12 4116 | 
. . . . . . . . 9
⊢ ((𝐵 = 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥)) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) | 
| 116 | 101, 114,
115 | syl6an 1445 | 
. . . . . . . 8
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 117 | 100, 116 | ralrimi 2568 | 
. . . . . . 7
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ∀𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) | 
| 118 |   | mpteq12 4116 | 
. . . . . . 7
⊢ ((𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 119 | 84, 117, 118 | sylancr 414 | 
. . . . . 6
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 120 | 119 | eqeq2d 2208 | 
. . . . 5
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))))) | 
| 121 | 98, 120 | syl5ibrcom 157 | 
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))))) | 
| 122 | 91, 121 | impbid 129 | 
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶)))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)))) | 
| 123 | 122 | ex 115 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑓 ∈ ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ∧ 𝑔 ∈ (𝐴 ↑𝑚 (𝐵 × 𝐶))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))))) | 
| 124 | 11, 15, 29, 47, 123 | en3d 6828 | 
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑𝑚 𝐵) ↑𝑚
𝐶) ≈ (𝐴 ↑𝑚
(𝐵 × 𝐶))) |