ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v GIF version

Theorem r19.21v 2451
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1467 . 2 𝑥𝜑
21r19.21 2450 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wral 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-4 1446  ax-17 1465  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-ral 2365
This theorem is referenced by:  r19.32vdc  2517  rmo4  2809  rmo3  2931  dftr5  3945  reusv3  4295  tfrlem1  6087  tfrlemi1  6111  tfr1onlemaccex  6127  tfrcllemaccex  6140  tfri3  6146  ordiso2  6782  raluz2  9128  ndvdssub  11269  nninfalllem1  12171  nninfsellemqall  12179
  Copyright terms: Public domain W3C validator