ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v GIF version

Theorem r19.21v 2574
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1542 . 2 𝑥𝜑
21r19.21 2573 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  r19.32vdc  2646  rmo4  2957  rmo3  3081  dftr5  4134  reusv3  4495  tfrlem1  6366  tfrlemi1  6390  tfr1onlemaccex  6406  tfrcllemaccex  6419  tfri3  6425  ordiso2  7101  raluz2  9653  ndvdssub  12095  nninfalllem1  15652  nninfsellemqall  15659
  Copyright terms: Public domain W3C validator