ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v GIF version

Theorem r19.21v 2543
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1516 . 2 𝑥𝜑
21r19.21 2542 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  r19.32vdc  2615  rmo4  2919  rmo3  3042  dftr5  4083  reusv3  4438  tfrlem1  6276  tfrlemi1  6300  tfr1onlemaccex  6316  tfrcllemaccex  6329  tfri3  6335  ordiso2  7000  raluz2  9517  ndvdssub  11867  nninfalllem1  13888  nninfsellemqall  13895
  Copyright terms: Public domain W3C validator