![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.21v | GIF version |
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1467 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.21 2450 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ial 1473 ax-i5r 1474 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-ral 2365 |
This theorem is referenced by: r19.32vdc 2517 rmo4 2809 rmo3 2931 dftr5 3945 reusv3 4295 tfrlem1 6087 tfrlemi1 6111 tfr1onlemaccex 6127 tfrcllemaccex 6140 tfri3 6146 ordiso2 6782 raluz2 9128 ndvdssub 11269 nninfalllem1 12171 nninfsellemqall 12179 |
Copyright terms: Public domain | W3C validator |