ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbaib GIF version

Theorem rbaib 925
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
2 ancom 266 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2bitri 184 . 2 (𝜑 ↔ (𝜒𝜓))
43baib 923 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  reusv1  4526  opres  4990  cores  5208  fvres  5627  fzsplit2  10214  ablnsg  13837  cnptoprest  14878
  Copyright terms: Public domain W3C validator