| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reusv1 | GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusv1 | ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2538 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
| 2 | 1 | nfmo 2075 | . . 3 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) |
| 3 | rsp 2554 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (𝑦 ∈ 𝐵 → (𝜑 → 𝑥 = 𝐶))) | |
| 4 | 3 | impd 254 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝐶)) |
| 5 | 4 | com12 30 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶)) |
| 6 | 5 | alrimiv 1898 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶)) |
| 7 | moeq 2949 | . . . . 5 ⊢ ∃*𝑥 𝑥 = 𝐶 | |
| 8 | moim 2119 | . . . . 5 ⊢ (∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶) → (∃*𝑥 𝑥 = 𝐶 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
| 9 | 6, 7, 8 | mpisyl 1467 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| 10 | 9 | ex 115 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| 11 | 2, 10 | rexlimi 2617 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| 12 | mormo 2723 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
| 13 | reu5 2724 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
| 14 | 13 | rbaib 923 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| 15 | 11, 12, 14 | 3syl 17 | 1 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃*wmo 2056 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∃!wreu 2487 ∃*wrmo 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-v 2775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |