![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reusv1 | GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
reusv1 | ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2425 | . . . 4 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) | |
2 | 1 | nfmo 1980 | . . 3 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) |
3 | rsp 2439 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (𝑦 ∈ 𝐵 → (𝜑 → 𝑥 = 𝐶))) | |
4 | 3 | impd 252 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝐶)) |
5 | 4 | com12 30 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶)) |
6 | 5 | alrimiv 1813 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶)) |
7 | moeq 2812 | . . . . 5 ⊢ ∃*𝑥 𝑥 = 𝐶 | |
8 | moim 2024 | . . . . 5 ⊢ (∀𝑥(∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → 𝑥 = 𝐶) → (∃*𝑥 𝑥 = 𝐶 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
9 | 6, 7, 8 | mpisyl 1390 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
10 | 9 | ex 114 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
11 | 2, 10 | rexlimi 2501 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
12 | mormo 2600 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
13 | reu5 2601 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | |
14 | 13 | rbaib 874 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
15 | 11, 12, 14 | 3syl 17 | 1 ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 ∃*wmo 1961 ∀wral 2375 ∃wrex 2376 ∃!wreu 2377 ∃*wrmo 2378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-v 2643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |