ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusv1 GIF version

Theorem reusv1 4418
Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
reusv1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 2488 . . . 4 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
21nfmo 2026 . . 3 𝑦∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)
3 rsp 2504 . . . . . . . 8 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → (𝑦𝐵 → (𝜑𝑥 = 𝐶)))
43impd 252 . . . . . . 7 (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → ((𝑦𝐵𝜑) → 𝑥 = 𝐶))
54com12 30 . . . . . 6 ((𝑦𝐵𝜑) → (∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶))
65alrimiv 1854 . . . . 5 ((𝑦𝐵𝜑) → ∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶))
7 moeq 2887 . . . . 5 ∃*𝑥 𝑥 = 𝐶
8 moim 2070 . . . . 5 (∀𝑥(∀𝑦𝐵 (𝜑𝑥 = 𝐶) → 𝑥 = 𝐶) → (∃*𝑥 𝑥 = 𝐶 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
96, 7, 8mpisyl 1426 . . . 4 ((𝑦𝐵𝜑) → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
109ex 114 . . 3 (𝑦𝐵 → (𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶)))
112, 10rexlimi 2567 . 2 (∃𝑦𝐵 𝜑 → ∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶))
12 mormo 2668 . 2 (∃*𝑥𝑦𝐵 (𝜑𝑥 = 𝐶) → ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
13 reu5 2669 . . 3 (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ∧ ∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1413rbaib 907 . 2 (∃*𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
1511, 12, 143syl 17 1 (∃𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333   = wceq 1335  ∃*wmo 2007  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  ∃*wrmo 2438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-v 2714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator