Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvres | GIF version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2712 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | brres 4865 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
3 | 2 | rbaib 907 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
4 | 3 | iotabidv 5149 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
5 | df-fv 5171 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
6 | df-fv 5171 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
7 | 4, 5, 6 | 3eqtr4g 2212 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 ↾ cres 4581 ℩cio 5126 ‘cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-res 4591 df-iota 5128 df-fv 5171 |
This theorem is referenced by: fvresd 5486 funssfv 5487 feqresmpt 5515 fvreseq 5564 respreima 5588 ffvresb 5623 fnressn 5646 fressnfv 5647 fvresi 5653 fvunsng 5654 fvsnun1 5657 fvsnun2 5658 fsnunfv 5661 funfvima 5689 isoresbr 5750 isores3 5756 isoini2 5760 ovres 5950 ofres 6036 offres 6073 fo1stresm 6099 fo2ndresm 6100 fo2ndf 6164 f1o2ndf1 6165 smores 6229 smores2 6231 tfrlem1 6245 rdgival 6319 frec0g 6334 freccllem 6339 frecsuclem 6343 frecrdg 6345 resixp 6667 djulclr 6979 djurclr 6980 djur 6999 updjudhcoinlf 7010 updjudhcoinrg 7011 updjud 7012 finomni 7062 exmidfodomrlemrALT 7117 addpiord 7215 mulpiord 7216 suplocexprlemell 7612 fseq1p1m1 9974 seq3feq2 10347 seq3coll 10690 shftidt 10710 climres 11177 fisumss 11266 isumclim3 11297 fsum2dlemstep 11308 fprodssdc 11464 fprod2dlemstep 11496 reeff1 11574 eucalgcvga 11907 eucalg 11908 strslfv2d 12179 setsslid 12187 setsslnid 12188 cnptopresti 12585 cnptoprest 12586 lmres 12595 tx1cn 12616 tx2cn 12617 cnmpt1st 12635 cnmpt2nd 12636 remetdval 12886 rescncf 12915 limcdifap 12978 limcresi 12982 reeff1o 13041 reefiso 13045 ioocosf1o 13122 relogcl 13130 relogef 13132 logltb 13142 djucllem 13320 012of 13514 2o01f 13515 |
Copyright terms: Public domain | W3C validator |