| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4974 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 923 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5263 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5288 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5288 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2264 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 ↾ cres 4685 ℩cio 5239 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-res 4695 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: fvresd 5614 funssfv 5615 feqresmpt 5646 fvreseq 5696 respreima 5721 ffvresb 5756 fnressn 5783 fressnfv 5784 fvresi 5790 fvunsng 5791 fvsnun1 5794 fvsnun2 5795 fsnunfv 5798 funfvima 5829 isoresbr 5891 isores3 5897 isoini2 5901 ovres 6099 ofres 6186 offres 6233 fo1stresm 6260 fo2ndresm 6261 fo2ndf 6326 f1o2ndf1 6327 smores 6391 smores2 6393 tfrlem1 6407 rdgival 6481 frec0g 6496 freccllem 6501 frecsuclem 6505 frecrdg 6507 resixp 6833 djulclr 7166 djurclr 7167 djur 7186 updjudhcoinlf 7197 updjudhcoinrg 7198 updjud 7199 finomni 7257 exmidfodomrlemrALT 7327 addpiord 7449 mulpiord 7450 suplocexprlemell 7846 fseq1p1m1 10236 seq3feq2 10643 seqf1oglem2 10687 seq3coll 11009 pfxccat1 11178 shftidt 11219 climres 11689 fisumss 11778 isumclim3 11809 fsum2dlemstep 11820 fprodssdc 11976 fprod2dlemstep 12008 reeff1 12086 eucalgcvga 12455 eucalg 12456 strslfv2d 12950 setsslid 12958 setsslnid 12959 resmhm 13394 resghm 13671 rngmgpf 13774 mgpf 13848 znf1o 14488 cnptopresti 14785 cnptoprest 14786 lmres 14795 tx1cn 14816 tx2cn 14817 cnmpt1st 14835 cnmpt2nd 14836 remetdval 15094 rescncf 15128 limcdifap 15209 limcresi 15213 plyreres 15311 reeff1o 15320 reefiso 15324 ioocosf1o 15401 relogcl 15409 relogef 15411 logltb 15421 mpodvdsmulf1o 15537 fsumdvdsmul 15538 djucllem 15875 012of 16069 2o01f 16070 |
| Copyright terms: Public domain | W3C validator |