Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvres | GIF version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | brres 4890 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
3 | 2 | rbaib 911 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
4 | 3 | iotabidv 5174 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
5 | df-fv 5196 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
6 | df-fv 5196 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
7 | 4, 5, 6 | 3eqtr4g 2224 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ↾ cres 4606 ℩cio 5151 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 |
This theorem is referenced by: fvresd 5511 funssfv 5512 feqresmpt 5540 fvreseq 5589 respreima 5613 ffvresb 5648 fnressn 5671 fressnfv 5672 fvresi 5678 fvunsng 5679 fvsnun1 5682 fvsnun2 5683 fsnunfv 5686 funfvima 5716 isoresbr 5777 isores3 5783 isoini2 5787 ovres 5981 ofres 6064 offres 6103 fo1stresm 6129 fo2ndresm 6130 fo2ndf 6195 f1o2ndf1 6196 smores 6260 smores2 6262 tfrlem1 6276 rdgival 6350 frec0g 6365 freccllem 6370 frecsuclem 6374 frecrdg 6376 resixp 6699 djulclr 7014 djurclr 7015 djur 7034 updjudhcoinlf 7045 updjudhcoinrg 7046 updjud 7047 finomni 7104 exmidfodomrlemrALT 7159 addpiord 7257 mulpiord 7258 suplocexprlemell 7654 fseq1p1m1 10029 seq3feq2 10405 seq3coll 10755 shftidt 10775 climres 11244 fisumss 11333 isumclim3 11364 fsum2dlemstep 11375 fprodssdc 11531 fprod2dlemstep 11563 reeff1 11641 eucalgcvga 11990 eucalg 11991 strslfv2d 12436 setsslid 12444 setsslnid 12445 cnptopresti 12878 cnptoprest 12879 lmres 12888 tx1cn 12909 tx2cn 12910 cnmpt1st 12928 cnmpt2nd 12929 remetdval 13179 rescncf 13208 limcdifap 13271 limcresi 13275 reeff1o 13334 reefiso 13338 ioocosf1o 13415 relogcl 13423 relogef 13425 logltb 13435 djucllem 13681 012of 13875 2o01f 13876 |
Copyright terms: Public domain | W3C validator |