| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4964 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5253 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5278 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5278 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2262 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ↾ cres 4676 ℩cio 5229 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-res 4686 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: fvresd 5600 funssfv 5601 feqresmpt 5632 fvreseq 5682 respreima 5707 ffvresb 5742 fnressn 5769 fressnfv 5770 fvresi 5776 fvunsng 5777 fvsnun1 5780 fvsnun2 5781 fsnunfv 5784 funfvima 5815 isoresbr 5877 isores3 5883 isoini2 5887 ovres 6085 ofres 6172 offres 6219 fo1stresm 6246 fo2ndresm 6247 fo2ndf 6312 f1o2ndf1 6313 smores 6377 smores2 6379 tfrlem1 6393 rdgival 6467 frec0g 6482 freccllem 6487 frecsuclem 6491 frecrdg 6493 resixp 6819 djulclr 7150 djurclr 7151 djur 7170 updjudhcoinlf 7181 updjudhcoinrg 7182 updjud 7183 finomni 7241 exmidfodomrlemrALT 7310 addpiord 7428 mulpiord 7429 suplocexprlemell 7825 fseq1p1m1 10215 seq3feq2 10619 seqf1oglem2 10663 seq3coll 10985 shftidt 11115 climres 11585 fisumss 11674 isumclim3 11705 fsum2dlemstep 11716 fprodssdc 11872 fprod2dlemstep 11904 reeff1 11982 eucalgcvga 12351 eucalg 12352 strslfv2d 12846 setsslid 12854 setsslnid 12855 resmhm 13290 resghm 13567 rngmgpf 13670 mgpf 13744 znf1o 14384 cnptopresti 14681 cnptoprest 14682 lmres 14691 tx1cn 14712 tx2cn 14713 cnmpt1st 14731 cnmpt2nd 14732 remetdval 14990 rescncf 15024 limcdifap 15105 limcresi 15109 plyreres 15207 reeff1o 15216 reefiso 15220 ioocosf1o 15297 relogcl 15305 relogef 15307 logltb 15317 mpodvdsmulf1o 15433 fsumdvdsmul 15434 djucllem 15698 012of 15892 2o01f 15893 |
| Copyright terms: Public domain | W3C validator |