| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 5010 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 926 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5300 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5325 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5325 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2287 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ↾ cres 4720 ℩cio 5275 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-res 4730 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fvresd 5651 funssfv 5652 feqresmpt 5687 fvreseq 5737 respreima 5762 ffvresb 5797 fnressn 5824 fressnfv 5825 fvresi 5831 fvunsng 5832 fvsnun1 5835 fvsnun2 5836 fsnunfv 5839 funfvima 5870 isoresbr 5932 isores3 5938 isoini2 5942 ovres 6144 ofres 6231 offres 6278 fo1stresm 6305 fo2ndresm 6306 fo2ndf 6371 f1o2ndf1 6372 smores 6436 smores2 6438 tfrlem1 6452 rdgival 6526 frec0g 6541 freccllem 6546 frecsuclem 6550 frecrdg 6552 resixp 6878 djulclr 7212 djurclr 7213 djur 7232 updjudhcoinlf 7243 updjudhcoinrg 7244 updjud 7245 finomni 7303 exmidfodomrlemrALT 7377 addpiord 7499 mulpiord 7500 suplocexprlemell 7896 fseq1p1m1 10286 seq3feq2 10693 seqf1oglem2 10737 seq3coll 11059 pfxccat1 11229 shftidt 11339 climres 11809 fisumss 11898 isumclim3 11929 fsum2dlemstep 11940 fprodssdc 12096 fprod2dlemstep 12128 reeff1 12206 eucalgcvga 12575 eucalg 12576 strslfv2d 13070 setsslid 13078 setsslnid 13079 resmhm 13515 resghm 13792 rngmgpf 13895 mgpf 13969 znf1o 14609 cnptopresti 14906 cnptoprest 14907 lmres 14916 tx1cn 14937 tx2cn 14938 cnmpt1st 14956 cnmpt2nd 14957 remetdval 15215 rescncf 15249 limcdifap 15330 limcresi 15334 plyreres 15432 reeff1o 15441 reefiso 15445 ioocosf1o 15522 relogcl 15530 relogef 15532 logltb 15542 mpodvdsmulf1o 15658 fsumdvdsmul 15659 djucllem 16122 012of 16316 2o01f 16317 |
| Copyright terms: Public domain | W3C validator |