Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvres | GIF version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | brres 4897 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
3 | 2 | rbaib 916 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
4 | 3 | iotabidv 5181 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
5 | df-fv 5206 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
6 | df-fv 5206 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
7 | 4, 5, 6 | 3eqtr4g 2228 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ↾ cres 4613 ℩cio 5158 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 df-iota 5160 df-fv 5206 |
This theorem is referenced by: fvresd 5521 funssfv 5522 feqresmpt 5550 fvreseq 5599 respreima 5624 ffvresb 5659 fnressn 5682 fressnfv 5683 fvresi 5689 fvunsng 5690 fvsnun1 5693 fvsnun2 5694 fsnunfv 5697 funfvima 5727 isoresbr 5788 isores3 5794 isoini2 5798 ovres 5992 ofres 6075 offres 6114 fo1stresm 6140 fo2ndresm 6141 fo2ndf 6206 f1o2ndf1 6207 smores 6271 smores2 6273 tfrlem1 6287 rdgival 6361 frec0g 6376 freccllem 6381 frecsuclem 6385 frecrdg 6387 resixp 6711 djulclr 7026 djurclr 7027 djur 7046 updjudhcoinlf 7057 updjudhcoinrg 7058 updjud 7059 finomni 7116 exmidfodomrlemrALT 7180 addpiord 7278 mulpiord 7279 suplocexprlemell 7675 fseq1p1m1 10050 seq3feq2 10426 seq3coll 10777 shftidt 10797 climres 11266 fisumss 11355 isumclim3 11386 fsum2dlemstep 11397 fprodssdc 11553 fprod2dlemstep 11585 reeff1 11663 eucalgcvga 12012 eucalg 12013 strslfv2d 12458 setsslid 12466 setsslnid 12467 cnptopresti 13032 cnptoprest 13033 lmres 13042 tx1cn 13063 tx2cn 13064 cnmpt1st 13082 cnmpt2nd 13083 remetdval 13333 rescncf 13362 limcdifap 13425 limcresi 13429 reeff1o 13488 reefiso 13492 ioocosf1o 13569 relogcl 13577 relogef 13579 logltb 13589 djucllem 13835 012of 14028 2o01f 14029 |
Copyright terms: Public domain | W3C validator |