| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4953 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5242 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5267 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5267 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2254 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ↾ cres 4666 ℩cio 5218 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-res 4676 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fvresd 5586 funssfv 5587 feqresmpt 5618 fvreseq 5668 respreima 5693 ffvresb 5728 fnressn 5751 fressnfv 5752 fvresi 5758 fvunsng 5759 fvsnun1 5762 fvsnun2 5763 fsnunfv 5766 funfvima 5797 isoresbr 5859 isores3 5865 isoini2 5869 ovres 6067 ofres 6154 offres 6201 fo1stresm 6228 fo2ndresm 6229 fo2ndf 6294 f1o2ndf1 6295 smores 6359 smores2 6361 tfrlem1 6375 rdgival 6449 frec0g 6464 freccllem 6469 frecsuclem 6473 frecrdg 6475 resixp 6801 djulclr 7124 djurclr 7125 djur 7144 updjudhcoinlf 7155 updjudhcoinrg 7156 updjud 7157 finomni 7215 exmidfodomrlemrALT 7284 addpiord 7402 mulpiord 7403 suplocexprlemell 7799 fseq1p1m1 10188 seq3feq2 10587 seqf1oglem2 10631 seq3coll 10953 shftidt 11017 climres 11487 fisumss 11576 isumclim3 11607 fsum2dlemstep 11618 fprodssdc 11774 fprod2dlemstep 11806 reeff1 11884 eucalgcvga 12253 eucalg 12254 strslfv2d 12748 setsslid 12756 setsslnid 12757 resmhm 13191 resghm 13468 rngmgpf 13571 mgpf 13645 znf1o 14285 cnptopresti 14582 cnptoprest 14583 lmres 14592 tx1cn 14613 tx2cn 14614 cnmpt1st 14632 cnmpt2nd 14633 remetdval 14891 rescncf 14925 limcdifap 15006 limcresi 15010 plyreres 15108 reeff1o 15117 reefiso 15121 ioocosf1o 15198 relogcl 15206 relogef 15208 logltb 15218 mpodvdsmulf1o 15334 fsumdvdsmul 15335 djucllem 15554 012of 15748 2o01f 15749 |
| Copyright terms: Public domain | W3C validator |