| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4964 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5253 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5278 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5278 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2262 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ↾ cres 4676 ℩cio 5229 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-res 4686 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: fvresd 5600 funssfv 5601 feqresmpt 5632 fvreseq 5682 respreima 5707 ffvresb 5742 fnressn 5769 fressnfv 5770 fvresi 5776 fvunsng 5777 fvsnun1 5780 fvsnun2 5781 fsnunfv 5784 funfvima 5815 isoresbr 5877 isores3 5883 isoini2 5887 ovres 6085 ofres 6172 offres 6219 fo1stresm 6246 fo2ndresm 6247 fo2ndf 6312 f1o2ndf1 6313 smores 6377 smores2 6379 tfrlem1 6393 rdgival 6467 frec0g 6482 freccllem 6487 frecsuclem 6491 frecrdg 6493 resixp 6819 djulclr 7150 djurclr 7151 djur 7170 updjudhcoinlf 7181 updjudhcoinrg 7182 updjud 7183 finomni 7241 exmidfodomrlemrALT 7310 addpiord 7428 mulpiord 7429 suplocexprlemell 7825 fseq1p1m1 10215 seq3feq2 10619 seqf1oglem2 10663 seq3coll 10985 shftidt 11086 climres 11556 fisumss 11645 isumclim3 11676 fsum2dlemstep 11687 fprodssdc 11843 fprod2dlemstep 11875 reeff1 11953 eucalgcvga 12322 eucalg 12323 strslfv2d 12817 setsslid 12825 setsslnid 12826 resmhm 13261 resghm 13538 rngmgpf 13641 mgpf 13715 znf1o 14355 cnptopresti 14652 cnptoprest 14653 lmres 14662 tx1cn 14683 tx2cn 14684 cnmpt1st 14702 cnmpt2nd 14703 remetdval 14961 rescncf 14995 limcdifap 15076 limcresi 15080 plyreres 15178 reeff1o 15187 reefiso 15191 ioocosf1o 15268 relogcl 15276 relogef 15278 logltb 15288 mpodvdsmulf1o 15404 fsumdvdsmul 15405 djucllem 15669 012of 15863 2o01f 15864 |
| Copyright terms: Public domain | W3C validator |