| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4952 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) | 
| 3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) | 
| 4 | 3 | iotabidv 5241 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) | 
| 5 | df-fv 5266 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5266 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2254 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ↾ cres 4665 ℩cio 5217 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: fvresd 5583 funssfv 5584 feqresmpt 5615 fvreseq 5665 respreima 5690 ffvresb 5725 fnressn 5748 fressnfv 5749 fvresi 5755 fvunsng 5756 fvsnun1 5759 fvsnun2 5760 fsnunfv 5763 funfvima 5794 isoresbr 5856 isores3 5862 isoini2 5866 ovres 6063 ofres 6150 offres 6192 fo1stresm 6219 fo2ndresm 6220 fo2ndf 6285 f1o2ndf1 6286 smores 6350 smores2 6352 tfrlem1 6366 rdgival 6440 frec0g 6455 freccllem 6460 frecsuclem 6464 frecrdg 6466 resixp 6792 djulclr 7115 djurclr 7116 djur 7135 updjudhcoinlf 7146 updjudhcoinrg 7147 updjud 7148 finomni 7206 exmidfodomrlemrALT 7270 addpiord 7383 mulpiord 7384 suplocexprlemell 7780 fseq1p1m1 10169 seq3feq2 10568 seqf1oglem2 10612 seq3coll 10934 shftidt 10998 climres 11468 fisumss 11557 isumclim3 11588 fsum2dlemstep 11599 fprodssdc 11755 fprod2dlemstep 11787 reeff1 11865 eucalgcvga 12226 eucalg 12227 strslfv2d 12721 setsslid 12729 setsslnid 12730 resmhm 13119 resghm 13390 rngmgpf 13493 mgpf 13567 znf1o 14207 cnptopresti 14474 cnptoprest 14475 lmres 14484 tx1cn 14505 tx2cn 14506 cnmpt1st 14524 cnmpt2nd 14525 remetdval 14783 rescncf 14817 limcdifap 14898 limcresi 14902 plyreres 15000 reeff1o 15009 reefiso 15013 ioocosf1o 15090 relogcl 15098 relogef 15100 logltb 15110 mpodvdsmulf1o 15226 fsumdvdsmul 15227 djucllem 15446 012of 15640 2o01f 15641 | 
| Copyright terms: Public domain | W3C validator |