Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvres | GIF version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | brres 4906 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
3 | 2 | rbaib 921 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
4 | 3 | iotabidv 5191 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
5 | df-fv 5216 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
6 | df-fv 5216 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
7 | 4, 5, 6 | 3eqtr4g 2233 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ↾ cres 4622 ℩cio 5168 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-res 4632 df-iota 5170 df-fv 5216 |
This theorem is referenced by: fvresd 5532 funssfv 5533 feqresmpt 5562 fvreseq 5611 respreima 5636 ffvresb 5671 fnressn 5694 fressnfv 5695 fvresi 5701 fvunsng 5702 fvsnun1 5705 fvsnun2 5706 fsnunfv 5709 funfvima 5739 isoresbr 5800 isores3 5806 isoini2 5810 ovres 6004 ofres 6087 offres 6126 fo1stresm 6152 fo2ndresm 6153 fo2ndf 6218 f1o2ndf1 6219 smores 6283 smores2 6285 tfrlem1 6299 rdgival 6373 frec0g 6388 freccllem 6393 frecsuclem 6397 frecrdg 6399 resixp 6723 djulclr 7038 djurclr 7039 djur 7058 updjudhcoinlf 7069 updjudhcoinrg 7070 updjud 7071 finomni 7128 exmidfodomrlemrALT 7192 addpiord 7290 mulpiord 7291 suplocexprlemell 7687 fseq1p1m1 10064 seq3feq2 10440 seq3coll 10790 shftidt 10810 climres 11279 fisumss 11368 isumclim3 11399 fsum2dlemstep 11410 fprodssdc 11566 fprod2dlemstep 11598 reeff1 11676 eucalgcvga 12025 eucalg 12026 strslfv2d 12471 setsslid 12479 setsslnid 12480 mgpf 13000 cnptopresti 13318 cnptoprest 13319 lmres 13328 tx1cn 13349 tx2cn 13350 cnmpt1st 13368 cnmpt2nd 13369 remetdval 13619 rescncf 13648 limcdifap 13711 limcresi 13715 reeff1o 13774 reefiso 13778 ioocosf1o 13855 relogcl 13863 relogef 13865 logltb 13875 djucllem 14121 012of 14314 2o01f 14315 |
Copyright terms: Public domain | W3C validator |