![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvres | GIF version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | brres 4949 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
4 | 3 | iotabidv 5238 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
5 | df-fv 5263 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
6 | df-fv 5263 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
7 | 4, 5, 6 | 3eqtr4g 2251 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ↾ cres 4662 ℩cio 5214 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-res 4672 df-iota 5216 df-fv 5263 |
This theorem is referenced by: fvresd 5580 funssfv 5581 feqresmpt 5612 fvreseq 5662 respreima 5687 ffvresb 5722 fnressn 5745 fressnfv 5746 fvresi 5752 fvunsng 5753 fvsnun1 5756 fvsnun2 5757 fsnunfv 5760 funfvima 5791 isoresbr 5853 isores3 5859 isoini2 5863 ovres 6060 ofres 6147 offres 6189 fo1stresm 6216 fo2ndresm 6217 fo2ndf 6282 f1o2ndf1 6283 smores 6347 smores2 6349 tfrlem1 6363 rdgival 6437 frec0g 6452 freccllem 6457 frecsuclem 6461 frecrdg 6463 resixp 6789 djulclr 7110 djurclr 7111 djur 7130 updjudhcoinlf 7141 updjudhcoinrg 7142 updjud 7143 finomni 7201 exmidfodomrlemrALT 7265 addpiord 7378 mulpiord 7379 suplocexprlemell 7775 fseq1p1m1 10163 seq3feq2 10550 seqf1oglem2 10594 seq3coll 10916 shftidt 10980 climres 11449 fisumss 11538 isumclim3 11569 fsum2dlemstep 11580 fprodssdc 11736 fprod2dlemstep 11768 reeff1 11846 eucalgcvga 12199 eucalg 12200 strslfv2d 12664 setsslid 12672 setsslnid 12673 resmhm 13062 resghm 13333 rngmgpf 13436 mgpf 13510 znf1o 14150 cnptopresti 14417 cnptoprest 14418 lmres 14427 tx1cn 14448 tx2cn 14449 cnmpt1st 14467 cnmpt2nd 14468 remetdval 14726 rescncf 14760 limcdifap 14841 limcresi 14845 plyreres 14942 reeff1o 14949 reefiso 14953 ioocosf1o 15030 relogcl 15038 relogef 15040 logltb 15050 djucllem 15362 012of 15556 2o01f 15557 |
Copyright terms: Public domain | W3C validator |