| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | GIF version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | brres 4962 | . . . 4 ⊢ (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ (𝐴𝐹𝑥 ∧ 𝐴 ∈ 𝐵)) |
| 3 | 2 | rbaib 922 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴(𝐹 ↾ 𝐵)𝑥 ↔ 𝐴𝐹𝑥)) |
| 4 | 3 | iotabidv 5251 | . 2 ⊢ (𝐴 ∈ 𝐵 → (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) = (℩𝑥𝐴𝐹𝑥)) |
| 5 | df-fv 5276 | . 2 ⊢ ((𝐹 ↾ 𝐵)‘𝐴) = (℩𝑥𝐴(𝐹 ↾ 𝐵)𝑥) | |
| 6 | df-fv 5276 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 7 | 4, 5, 6 | 3eqtr4g 2262 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ↾ cres 4675 ℩cio 5227 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-res 4685 df-iota 5229 df-fv 5276 |
| This theorem is referenced by: fvresd 5595 funssfv 5596 feqresmpt 5627 fvreseq 5677 respreima 5702 ffvresb 5737 fnressn 5760 fressnfv 5761 fvresi 5767 fvunsng 5768 fvsnun1 5771 fvsnun2 5772 fsnunfv 5775 funfvima 5806 isoresbr 5868 isores3 5874 isoini2 5878 ovres 6076 ofres 6163 offres 6210 fo1stresm 6237 fo2ndresm 6238 fo2ndf 6303 f1o2ndf1 6304 smores 6368 smores2 6370 tfrlem1 6384 rdgival 6458 frec0g 6473 freccllem 6478 frecsuclem 6482 frecrdg 6484 resixp 6810 djulclr 7133 djurclr 7134 djur 7153 updjudhcoinlf 7164 updjudhcoinrg 7165 updjud 7166 finomni 7224 exmidfodomrlemrALT 7293 addpiord 7411 mulpiord 7412 suplocexprlemell 7808 fseq1p1m1 10198 seq3feq2 10602 seqf1oglem2 10646 seq3coll 10968 shftidt 11063 climres 11533 fisumss 11622 isumclim3 11653 fsum2dlemstep 11664 fprodssdc 11820 fprod2dlemstep 11852 reeff1 11930 eucalgcvga 12299 eucalg 12300 strslfv2d 12794 setsslid 12802 setsslnid 12803 resmhm 13237 resghm 13514 rngmgpf 13617 mgpf 13691 znf1o 14331 cnptopresti 14628 cnptoprest 14629 lmres 14638 tx1cn 14659 tx2cn 14660 cnmpt1st 14678 cnmpt2nd 14679 remetdval 14937 rescncf 14971 limcdifap 15052 limcresi 15056 plyreres 15154 reeff1o 15163 reefiso 15167 ioocosf1o 15244 relogcl 15252 relogef 15254 logltb 15264 mpodvdsmulf1o 15380 fsumdvdsmul 15381 djucllem 15600 012of 15794 2o01f 15795 |
| Copyright terms: Public domain | W3C validator |