ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 GIF version

Theorem fzsplit2 9837
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))

Proof of Theorem fzsplit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9813 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
2 eluzel2 9338 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
32adantl 275 . . . . . 6 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
4 zlelttric 9106 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥𝐾𝐾 < 𝑥))
51, 3, 4syl2anr 288 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥𝐾𝐾 < 𝑥))
6 elfzuz 9809 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
7 elfz5 9805 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
86, 3, 7syl2anr 288 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
9 simpl 108 . . . . . . . . 9 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ (ℤ𝑀))
10 eluzelz 9342 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℤ𝑀) → (𝐾 + 1) ∈ ℤ)
119, 10syl 14 . . . . . . . 8 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
12 eluz 9346 . . . . . . . 8 (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
1311, 1, 12syl2an 287 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
14 elfzuz3 9810 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 275 . . . . . . . 8 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 9807 . . . . . . . . 9 (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 906 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
1815, 17syl 14 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
19 zltp1le 9115 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
203, 1, 19syl2an 287 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
2113, 18, 203bitr4d 219 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥))
228, 21orbi12d 782 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥𝐾𝐾 < 𝑥)))
235, 22mpbird 166 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
24 elfzuz 9809 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ𝑀))
2524adantl 275 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ𝑀))
26 simpr 109 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
27 elfzuz3 9810 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ𝑥))
28 uztrn 9349 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
2926, 27, 28syl2an 287 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ𝑥))
30 elfzuzb 9807 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
3125, 29, 30sylanbrc 413 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁))
32 elfzuz 9809 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
33 uztrn 9349 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3432, 9, 33syl2anr 288 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ𝑀))
35 elfzuz3 9810 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑥))
3635adantl 275 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝑥))
3734, 36, 30sylanbrc 413 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
3831, 37jaodan 786 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
3923, 38impbida 585 . . 3 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))))
40 elun 3217 . . 3 (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
4139, 40syl6bbr 197 . 2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))))
4241eqrdv 2137 1 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  cun 3069   class class class wbr 3929  cfv 5123  (class class class)co 5774  1c1 7628   + caddc 7630   < clt 7807  cle 7808  cz 9061  cuz 9333  ...cfz 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798
This theorem is referenced by:  fzsplit  9838  fzpred  9857
  Copyright terms: Public domain W3C validator