| Step | Hyp | Ref
| Expression |
| 1 | | elfzelz 10117 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) |
| 2 | | eluzel2 9623 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝐾 ∈ ℤ) |
| 3 | 2 | adantl 277 |
. . . . . 6
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℤ) |
| 4 | | zlelttric 9388 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥)) |
| 5 | 1, 3, 4 | syl2anr 290 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥)) |
| 6 | | elfzuz 10113 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 7 | | elfz5 10109 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥 ≤ 𝐾)) |
| 8 | 6, 3, 7 | syl2anr 290 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥 ≤ 𝐾)) |
| 9 | | simpl 109 |
. . . . . . . . 9
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈
(ℤ≥‘𝑀)) |
| 10 | | eluzelz 9627 |
. . . . . . . . 9
⊢ ((𝐾 + 1) ∈
(ℤ≥‘𝑀) → (𝐾 + 1) ∈ ℤ) |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℤ) |
| 12 | | eluz 9631 |
. . . . . . . 8
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈
(ℤ≥‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥)) |
| 13 | 11, 1, 12 | syl2an 289 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ≥‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥)) |
| 14 | | elfzuz3 10114 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 15 | 14 | adantl 277 |
. . . . . . . 8
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 16 | | elfzuzb 10111 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘𝑥))) |
| 17 | 16 | rbaib 922 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) |
| 18 | 15, 17 | syl 14 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ≥‘(𝐾 + 1)))) |
| 19 | | zltp1le 9397 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥)) |
| 20 | 3, 1, 19 | syl2an 289 |
. . . . . . 7
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥)) |
| 21 | 13, 18, 20 | 3bitr4d 220 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥)) |
| 22 | 8, 21 | orbi12d 794 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ≤ 𝐾 ∨ 𝐾 < 𝑥))) |
| 23 | 5, 22 | mpbird 167 |
. . . 4
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) |
| 24 | | elfzuz 10113 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 25 | 24 | adantl 277 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 26 | | simpr 110 |
. . . . . . 7
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 27 | | elfzuz3 10114 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑥)) |
| 28 | | uztrn 9635 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑥)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 29 | 26, 27, 28 | syl2an 289 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 30 | | elfzuzb 10111 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑥))) |
| 31 | 25, 29, 30 | sylanbrc 417 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁)) |
| 32 | | elfzuz 10113 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ≥‘(𝐾 + 1))) |
| 33 | | uztrn 9635 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈
(ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 34 | 32, 9, 33 | syl2anr 290 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 35 | | elfzuz3 10114 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 36 | 35 | adantl 277 |
. . . . . 6
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑥)) |
| 37 | 34, 36, 30 | sylanbrc 417 |
. . . . 5
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 38 | 31, 37 | jaodan 798 |
. . . 4
⊢ ((((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁)) |
| 39 | 23, 38 | impbida 596 |
. . 3
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))) |
| 40 | | elun 3305 |
. . 3
⊢ (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) |
| 41 | 39, 40 | bitr4di 198 |
. 2
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))) |
| 42 | 41 | eqrdv 2194 |
1
⊢ (((𝐾 + 1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) |