Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opres | GIF version |
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
opres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opres | ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelres 4889 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
3 | 2 | rbaib 911 | 1 ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 〈cop 3579 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-res 4616 |
This theorem is referenced by: resieq 4894 2elresin 5299 |
Copyright terms: Public domain | W3C validator |