| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baibr | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 920 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 141 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rbaibr 923 pm5.44 926 exmoeu2 2093 r19.9rmv 3543 dfopg 3807 brinxp 4732 infidc 7009 elioo5 10025 prmind2 12313 eulerthlemfi 12421 phisum 12434 pcelnn 12515 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |