ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibr GIF version

Theorem baibr 910
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baibr (𝜓 → (𝜒𝜑))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21baib 909 . 2 (𝜓 → (𝜑𝜒))
32bicomd 140 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  rbaibr  912  pm5.44  915  exmoeu2  2062  r19.9rmv  3499  dfopg  3755  brinxp  4671  elioo5  9865  prmind2  12048  eulerthlemfi  12156  pcelnn  12248  bj-charfundcALT  13651
  Copyright terms: Public domain W3C validator