ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores GIF version

Theorem cores 5170
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))

Proof of Theorem cores
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . . 7 𝑧 ∈ V
2 vex 2763 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 4896 . . . . . 6 (𝑧𝐵𝑦𝑦 ∈ ran 𝐵)
4 ssel 3174 . . . . . 6 (ran 𝐵𝐶 → (𝑦 ∈ ran 𝐵𝑦𝐶))
5 vex 2763 . . . . . . . 8 𝑥 ∈ V
65brres 4949 . . . . . . 7 (𝑦(𝐴𝐶)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐶))
76rbaib 922 . . . . . 6 (𝑦𝐶 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥))
83, 4, 7syl56 34 . . . . 5 (ran 𝐵𝐶 → (𝑧𝐵𝑦 → (𝑦(𝐴𝐶)𝑥𝑦𝐴𝑥)))
98pm5.32d 450 . . . 4 (ran 𝐵𝐶 → ((𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ (𝑧𝐵𝑦𝑦𝐴𝑥)))
109exbidv 1836 . . 3 (ran 𝐵𝐶 → (∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥) ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)))
1110opabbidv 4096 . 2 (ran 𝐵𝐶 → {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)} = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)})
12 df-co 4669 . 2 ((𝐴𝐶) ∘ 𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦(𝐴𝐶)𝑥)}
13 df-co 4669 . 2 (𝐴𝐵) = {⟨𝑧, 𝑥⟩ ∣ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥)}
1411, 12, 133eqtr4g 2251 1 (ran 𝐵𝐶 → ((𝐴𝐶) ∘ 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wss 3154   class class class wbr 4030  {copab 4090  ran crn 4661  cres 4662  ccom 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672
This theorem is referenced by:  cocnvcnv1  5177  cores2  5179  cocnvres  5191  relcoi2  5197  fco2  5421  fcoi2  5436
  Copyright terms: Public domain W3C validator