ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptoprest GIF version

Theorem cnptoprest 13966
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = βˆͺ 𝐽
cnprest.2 π‘Œ = βˆͺ 𝐾
Assertion
Ref Expression
cnptoprest (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ)))

Proof of Theorem cnptoprest
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1001 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐽 ∈ Top)
2 simpl3 1003 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐴 βŠ† 𝑋)
3 cnprest.1 . . . . . . . . . 10 𝑋 = βˆͺ 𝐽
43ntrss2 13848 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
51, 2, 4syl2anc 411 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
6 simprl 529 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜π΄))
75, 6sseldd 3168 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝑃 ∈ 𝐴)
8 fvres 5551 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
97, 8syl 14 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
109eqcomd 2193 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (πΉβ€˜π‘ƒ) = ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ))
1110eleq1d 2256 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝑦 ↔ ((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦))
12 inss1 3367 . . . . . . . . 9 (π‘₯ ∩ 𝐴) βŠ† π‘₯
13 imass2 5016 . . . . . . . . 9 ((π‘₯ ∩ 𝐴) βŠ† π‘₯ β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† (𝐹 β€œ π‘₯))
14 sstr2 3174 . . . . . . . . 9 ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† (𝐹 β€œ π‘₯) β†’ ((𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
1512, 13, 14mp2b 8 . . . . . . . 8 ((𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)
1615anim2i 342 . . . . . . 7 ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
1716reximi 2584 . . . . . 6 (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
183ntropn 13844 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
191, 2, 18syl2anc 411 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((intβ€˜π½)β€˜π΄) ∈ 𝐽)
20 inopn 13730 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽) β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽)
21203com23 1210 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽 ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽)
22213expia 1206 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π΄) ∈ 𝐽) β†’ (π‘₯ ∈ 𝐽 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽))
231, 19, 22syl2anc 411 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (π‘₯ ∈ 𝐽 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽))
24 elin 3330 . . . . . . . . . . . . . 14 (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ↔ (𝑃 ∈ π‘₯ ∧ 𝑃 ∈ ((intβ€˜π½)β€˜π΄)))
2524simplbi2com 1454 . . . . . . . . . . . . 13 (𝑃 ∈ ((intβ€˜π½)β€˜π΄) β†’ (𝑃 ∈ π‘₯ β†’ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
266, 25syl 14 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝑃 ∈ π‘₯ β†’ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
27 sslin 3373 . . . . . . . . . . . . . 14 (((intβ€˜π½)β€˜π΄) βŠ† 𝐴 β†’ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) βŠ† (π‘₯ ∩ 𝐴))
28 imass2 5016 . . . . . . . . . . . . . 14 ((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) βŠ† (π‘₯ ∩ 𝐴) β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)))
295, 27, 283syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)))
30 sstr2 3174 . . . . . . . . . . . . 13 ((𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† (𝐹 β€œ (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
3129, 30syl 14 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦 β†’ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
3226, 31anim12d 335 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)))
3323, 32anim12d 335 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)) β†’ ((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽 ∧ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))))
34 eleq2 2251 . . . . . . . . . . . 12 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
35 imaeq2 4978 . . . . . . . . . . . . 13 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ (𝐹 β€œ 𝑧) = (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))))
3635sseq1d 3196 . . . . . . . . . . . 12 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ ((𝐹 β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦))
3734, 36anbi12d 473 . . . . . . . . . . 11 (𝑧 = (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) β†’ ((𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)))
3837rspcev 2853 . . . . . . . . . 10 (((π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∈ 𝐽 ∧ (𝑃 ∈ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄)) ∧ (𝐹 β€œ (π‘₯ ∩ ((intβ€˜π½)β€˜π΄))) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))
3933, 38syl6 33 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
4039expdimp 259 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ π‘₯ ∈ 𝐽) β†’ ((𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
4140rexlimdva 2604 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
42 eleq2 2251 . . . . . . . . 9 (𝑧 = π‘₯ β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ π‘₯))
43 imaeq2 4978 . . . . . . . . . 10 (𝑧 = π‘₯ β†’ (𝐹 β€œ 𝑧) = (𝐹 β€œ π‘₯))
4443sseq1d 3196 . . . . . . . . 9 (𝑧 = π‘₯ β†’ ((𝐹 β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ π‘₯) βŠ† 𝑦))
4542, 44anbi12d 473 . . . . . . . 8 (𝑧 = π‘₯ β†’ ((𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
4645cbvrexv 2716 . . . . . . 7 (βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))
4741, 46imbitrdi 161 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))
4817, 47impbid2 143 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
49 vex 2752 . . . . . . . 8 π‘₯ ∈ V
5049inex1 4149 . . . . . . 7 (π‘₯ ∩ 𝐴) ∈ V
5150a1i 9 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∩ 𝐴) ∈ V)
52 uniexg 4451 . . . . . . . . 9 (𝐽 ∈ Top β†’ βˆͺ 𝐽 ∈ V)
531, 52syl 14 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ βˆͺ 𝐽 ∈ V)
542, 3sseqtrdi 3215 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐴 βŠ† βˆͺ 𝐽)
5553, 54ssexd 4155 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐴 ∈ V)
56 elrest 12712 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) β†’ (𝑧 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑧 = (π‘₯ ∩ 𝐴)))
571, 55, 56syl2anc 411 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝑧 ∈ (𝐽 β†Ύt 𝐴) ↔ βˆƒπ‘₯ ∈ 𝐽 𝑧 = (π‘₯ ∩ 𝐴)))
58 eleq2 2251 . . . . . . . 8 (𝑧 = (π‘₯ ∩ 𝐴) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (π‘₯ ∩ 𝐴)))
59 elin 3330 . . . . . . . . . 10 (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ (𝑃 ∈ π‘₯ ∧ 𝑃 ∈ 𝐴))
6059rbaib 922 . . . . . . . . 9 (𝑃 ∈ 𝐴 β†’ (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ 𝑃 ∈ π‘₯))
617, 60syl 14 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝑃 ∈ (π‘₯ ∩ 𝐴) ↔ 𝑃 ∈ π‘₯))
6258, 61sylan9bbr 463 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ π‘₯))
63 simpr 110 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ 𝑧 = (π‘₯ ∩ 𝐴))
6463imaeq2d 4982 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) = ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)))
65 inss2 3368 . . . . . . . . . 10 (π‘₯ ∩ 𝐴) βŠ† 𝐴
66 resima2 4953 . . . . . . . . . 10 ((π‘₯ ∩ 𝐴) βŠ† 𝐴 β†’ ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)) = (𝐹 β€œ (π‘₯ ∩ 𝐴)))
6765, 66ax-mp 5 . . . . . . . . 9 ((𝐹 β†Ύ 𝐴) β€œ (π‘₯ ∩ 𝐴)) = (𝐹 β€œ (π‘₯ ∩ 𝐴))
6864, 67eqtrdi 2236 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) = (𝐹 β€œ (π‘₯ ∩ 𝐴)))
6968sseq1d 3196 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ (((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦))
7062, 69anbi12d 473 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) ∧ 𝑧 = (π‘₯ ∩ 𝐴)) β†’ ((𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
7151, 57, 70rexxfr2d 4477 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦) ↔ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ (π‘₯ ∩ 𝐴)) βŠ† 𝑦)))
7248, 71bitr4d 191 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦) ↔ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))
7311, 72imbi12d 234 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
7473ralbidv 2487 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
753toptopon 13745 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
761, 75sylib 122 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
77 simpl2 1002 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐾 ∈ Top)
78 cnprest.2 . . . . . 6 π‘Œ = βˆͺ 𝐾
7978toptopon 13745 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜π‘Œ))
8077, 79sylib 122 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
812, 7sseldd 3168 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝑃 ∈ 𝑋)
82 iscnp 13926 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
8376, 80, 81, 82syl3anc 1248 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
84 simprr 531 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
8584biantrurd 305 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
8683, 85bitr4d 191 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦))))
87 simp1l 1022 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐽 ∈ Top)
8887, 75sylib 122 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
89 simp1r 1023 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐴 βŠ† 𝑋)
90 resttopon 13898 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
9188, 89, 90syl2anc 411 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
92 simp3 1000 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐾 ∈ Top)
9392, 79sylib 122 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
9443ad2ant1 1019 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((intβ€˜π½)β€˜π΄) βŠ† 𝐴)
95 simp2l 1024 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜π΄))
9694, 95sseldd 3168 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝑃 ∈ 𝐴)
97 iscnp 13926 . . . . 5 (((𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝐴) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ ((𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))))
9891, 93, 96, 97syl3anc 1248 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ ((𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))))
99 simp2r 1025 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
10099, 89fssresd 5404 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ)
101100biantrurd 305 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ (βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)) ↔ ((𝐹 β†Ύ 𝐴):π΄βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦)))))
10298, 101bitr4d 191 . . 3 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐾 ∈ Top) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
1031, 2, 6, 84, 77, 102syl221anc 1259 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ ((𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ) ↔ βˆ€π‘¦ ∈ 𝐾 (((𝐹 β†Ύ 𝐴)β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ (𝐽 β†Ύt 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 β†Ύ 𝐴) β€œ 𝑧) βŠ† 𝑦))))
10474, 86, 1033bitr4d 220 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π΄) ∧ 𝐹:π‘‹βŸΆπ‘Œ)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹 β†Ύ 𝐴) ∈ (((𝐽 β†Ύt 𝐴) CnP 𝐾)β€˜π‘ƒ)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 979   = wceq 1363   ∈ wcel 2158  βˆ€wral 2465  βˆƒwrex 2466  Vcvv 2749   ∩ cin 3140   βŠ† wss 3141  βˆͺ cuni 3821   β†Ύ cres 4640   β€œ cima 4641  βŸΆwf 5224  β€˜cfv 5228  (class class class)co 5888   β†Ύt crest 12705  Topctop 13724  TopOnctopon 13737  intcnt 13820   CnP ccnp 13913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-map 6663  df-rest 12707  df-topgen 12726  df-top 13725  df-topon 13738  df-bases 13770  df-ntr 13823  df-cnp 13916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator