Step | Hyp | Ref
| Expression |
1 | | simpl1 990 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐽 ∈ Top) |
2 | | simpl3 992 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐴 ⊆ 𝑋) |
3 | | cnprest.1 |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
4 | 3 | ntrss2 12761 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
5 | 1, 2, 4 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
6 | | simprl 521 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝑃 ∈ ((int‘𝐽)‘𝐴)) |
7 | 5, 6 | sseldd 3143 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝑃 ∈ 𝐴) |
8 | | fvres 5510 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
9 | 7, 8 | syl 14 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
10 | 9 | eqcomd 2171 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹‘𝑃) = ((𝐹 ↾ 𝐴)‘𝑃)) |
11 | 10 | eleq1d 2235 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹‘𝑃) ∈ 𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦)) |
12 | | inss1 3342 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
13 | | imass2 4980 |
. . . . . . . . 9
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) |
14 | | sstr2 3149 |
. . . . . . . . 9
⊢ ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
15 | 12, 13, 14 | mp2b 8 |
. . . . . . . 8
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) |
16 | 15 | anim2i 340 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
17 | 16 | reximi 2563 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
18 | 3 | ntropn 12757 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
19 | 1, 2, 18 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
20 | | inopn 12641 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) |
21 | 20 | 3com23 1199 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽) |
22 | 21 | 3expia 1195 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) |
23 | 1, 19, 22 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝑥 ∈ 𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)) |
24 | | elin 3305 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ ((int‘𝐽)‘𝐴))) |
25 | 24 | simplbi2com 1432 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
26 | 6, 25 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
27 | | sslin 3348 |
. . . . . . . . . . . . . 14
⊢
(((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴)) |
28 | | imass2 4980 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥 ∩ 𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) |
29 | 5, 27, 28 | 3syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴))) |
30 | | sstr2 3149 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥 ∩ 𝐴)) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
31 | 29, 30 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
32 | 26, 31 | anim12d 333 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) |
33 | 23, 32 | anim12d 333 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))) |
34 | | eleq2 2230 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
35 | | imaeq2 4942 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹 “ 𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴)))) |
36 | 35 | sseq1d 3171 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) |
37 | 34, 36 | anbi12d 465 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))) |
38 | 37 | rspcev 2830 |
. . . . . . . . . 10
⊢ (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
39 | 33, 38 | syl6 33 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
40 | 39 | expdimp 257 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑥 ∈ 𝐽) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
41 | 40 | rexlimdva 2583 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
42 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) |
43 | | imaeq2 4942 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝐹 “ 𝑧) = (𝐹 “ 𝑥)) |
44 | 43 | sseq1d 3171 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ 𝑥) ⊆ 𝑦)) |
45 | 42, 44 | anbi12d 465 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
46 | 45 | cbvrexv 2693 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
47 | 41, 46 | syl6ib 160 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
48 | 17, 47 | impbid2 142 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
49 | | vex 2729 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
50 | 49 | inex1 4116 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐴) ∈ V |
51 | 50 | a1i 9 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
52 | | uniexg 4417 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
53 | 1, 52 | syl 14 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ∪ 𝐽 ∈ V) |
54 | 2, 3 | sseqtrdi 3190 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐴 ⊆ ∪ 𝐽) |
55 | 53, 54 | ssexd 4122 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐴 ∈ V) |
56 | | elrest 12563 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
57 | 1, 55, 56 | syl2anc 409 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
58 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∩ 𝐴) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) |
59 | | elin 3305 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) |
60 | 59 | rbaib 911 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) |
61 | 7, 60 | syl 14 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ 𝑃 ∈ 𝑥)) |
62 | 58, 61 | sylan9bbr 459 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥)) |
63 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) |
64 | 63 | imaeq2d 4946 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) |
65 | | inss2 3343 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
66 | | resima2 4918 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) |
67 | 65, 66 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) |
68 | 64, 67 | eqtrdi 2215 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) |
69 | 68 | sseq1d 3171 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
70 | 62, 69 | anbi12d 465 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
71 | 51, 57, 70 | rexxfr2d 4443 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
72 | 48, 71 | bitr4d 190 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
73 | 11, 72 | imbi12d 233 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
74 | 73 | ralbidv 2466 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
75 | 3 | toptopon 12656 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
76 | 1, 75 | sylib 121 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐽 ∈ (TopOn‘𝑋)) |
77 | | simpl2 991 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐾 ∈ Top) |
78 | | cnprest.2 |
. . . . . 6
⊢ 𝑌 = ∪
𝐾 |
79 | 78 | toptopon 12656 |
. . . . 5
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
80 | 77, 79 | sylib 121 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐾 ∈ (TopOn‘𝑌)) |
81 | 2, 7 | sseldd 3143 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝑃 ∈ 𝑋) |
82 | | iscnp 12839 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
83 | 76, 80, 81, 82 | syl3anc 1228 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
84 | | simprr 522 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → 𝐹:𝑋⟶𝑌) |
85 | 84 | biantrurd 303 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
86 | 83, 85 | bitr4d 190 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
87 | | simp1l 1011 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top) |
88 | 87, 75 | sylib 121 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋)) |
89 | | simp1r 1012 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐴 ⊆ 𝑋) |
90 | | resttopon 12811 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
91 | 88, 89, 90 | syl2anc 409 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
92 | | simp3 989 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top) |
93 | 92, 79 | sylib 121 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌)) |
94 | 4 | 3ad2ant1 1008 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴) |
95 | | simp2l 1013 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴)) |
96 | 94, 95 | sseldd 3143 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ 𝐴) |
97 | | iscnp 12839 |
. . . . 5
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
98 | 91, 93, 96, 97 | syl3anc 1228 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
99 | | simp2r 1014 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋⟶𝑌) |
100 | 99, 89 | fssresd 5364 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
101 | 100 | biantrurd 303 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)) ↔ ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
102 | 98, 101 | bitr4d 190 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐾 ∈ Top) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
103 | 1, 2, 6, 84, 77, 102 | syl221anc 1239 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦)))) |
104 | 74, 86, 103 | 3bitr4d 219 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |