ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptoprest GIF version

Theorem cnptoprest 12424
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnptoprest (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))

Proof of Theorem cnptoprest
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 984 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐽 ∈ Top)
2 simpl3 986 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐴𝑋)
3 cnprest.1 . . . . . . . . . 10 𝑋 = 𝐽
43ntrss2 12306 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
51, 2, 4syl2anc 408 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
6 simprl 520 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝑃 ∈ ((int‘𝐽)‘𝐴))
75, 6sseldd 3098 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝑃𝐴)
8 fvres 5445 . . . . . . 7 (𝑃𝐴 → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
97, 8syl 14 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹𝐴)‘𝑃) = (𝐹𝑃))
109eqcomd 2145 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹𝑃) = ((𝐹𝐴)‘𝑃))
1110eleq1d 2208 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹𝑃) ∈ 𝑦 ↔ ((𝐹𝐴)‘𝑃) ∈ 𝑦))
12 inss1 3296 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝑥
13 imass2 4915 . . . . . . . . 9 ((𝑥𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥))
14 sstr2 3104 . . . . . . . . 9 ((𝐹 “ (𝑥𝐴)) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1512, 13, 14mp2b 8 . . . . . . . 8 ((𝐹𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)
1615anim2i 339 . . . . . . 7 ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
1716reximi 2529 . . . . . 6 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
183ntropn 12302 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
191, 2, 18syl2anc 408 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
20 inopn 12186 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥𝐽 ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
21203com23 1187 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽𝑥𝐽) → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽)
22213expia 1183 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
231, 19, 22syl2anc 408 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝑥𝐽 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽))
24 elin 3259 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ↔ (𝑃𝑥𝑃 ∈ ((int‘𝐽)‘𝐴)))
2524simplbi2com 1420 . . . . . . . . . . . . 13 (𝑃 ∈ ((int‘𝐽)‘𝐴) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
266, 25syl 14 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝑃𝑥𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
27 sslin 3302 . . . . . . . . . . . . . 14 (((int‘𝐽)‘𝐴) ⊆ 𝐴 → (𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴))
28 imass2 4915 . . . . . . . . . . . . . 14 ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ⊆ (𝑥𝐴) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
295, 27, 283syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)))
30 sstr2 3104 . . . . . . . . . . . . 13 ((𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ (𝐹 “ (𝑥𝐴)) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3129, 30syl 14 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹 “ (𝑥𝐴)) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3226, 31anim12d 333 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
3323, 32anim12d 333 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))))
34 eleq2 2203 . . . . . . . . . . . 12 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝑃𝑧𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
35 imaeq2 4877 . . . . . . . . . . . . 13 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → (𝐹𝑧) = (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))))
3635sseq1d 3126 . . . . . . . . . . . 12 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦))
3734, 36anbi12d 464 . . . . . . . . . . 11 (𝑧 = (𝑥 ∩ ((int‘𝐽)‘𝐴)) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)))
3837rspcev 2789 . . . . . . . . . 10 (((𝑥 ∩ ((int‘𝐽)‘𝐴)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑥 ∩ ((int‘𝐽)‘𝐴)) ∧ (𝐹 “ (𝑥 ∩ ((int‘𝐽)‘𝐴))) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
3933, 38syl6 33 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4039expdimp 257 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
4140rexlimdva 2549 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
42 eleq2 2203 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑃𝑧𝑃𝑥))
43 imaeq2 4877 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
4443sseq1d 3126 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝑦))
4542, 44anbi12d 464 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
4645cbvrexv 2655 . . . . . . 7 (∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
4741, 46syl6ib 160 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))
4817, 47impbid2 142 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
49 vex 2689 . . . . . . . 8 𝑥 ∈ V
5049inex1 4062 . . . . . . 7 (𝑥𝐴) ∈ V
5150a1i 9 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
52 uniexg 4361 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
531, 52syl 14 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐽 ∈ V)
542, 3sseqtrdi 3145 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐴 𝐽)
5553, 54ssexd 4068 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐴 ∈ V)
56 elrest 12143 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
571, 55, 56syl2anc 408 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐴)))
58 eleq2 2203 . . . . . . . 8 (𝑧 = (𝑥𝐴) → (𝑃𝑧𝑃 ∈ (𝑥𝐴)))
59 elin 3259 . . . . . . . . . 10 (𝑃 ∈ (𝑥𝐴) ↔ (𝑃𝑥𝑃𝐴))
6059rbaib 906 . . . . . . . . 9 (𝑃𝐴 → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
617, 60syl 14 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝑃 ∈ (𝑥𝐴) ↔ 𝑃𝑥))
6258, 61sylan9bbr 458 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → (𝑃𝑧𝑃𝑥))
63 simpr 109 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → 𝑧 = (𝑥𝐴))
6463imaeq2d 4881 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = ((𝐹𝐴) “ (𝑥𝐴)))
65 inss2 3297 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
66 resima2 4853 . . . . . . . . . 10 ((𝑥𝐴) ⊆ 𝐴 → ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴)))
6765, 66ax-mp 5 . . . . . . . . 9 ((𝐹𝐴) “ (𝑥𝐴)) = (𝐹 “ (𝑥𝐴))
6864, 67syl6eq 2188 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → ((𝐹𝐴) “ 𝑧) = (𝐹 “ (𝑥𝐴)))
6968sseq1d 3126 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → (((𝐹𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦))
7062, 69anbi12d 464 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) ∧ 𝑧 = (𝑥𝐴)) → ((𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7151, 57, 70rexxfr2d 4386 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹 “ (𝑥𝐴)) ⊆ 𝑦)))
7248, 71bitr4d 190 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))
7311, 72imbi12d 233 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
7473ralbidv 2437 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
753toptopon 12201 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
761, 75sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
77 simpl2 985 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐾 ∈ Top)
78 cnprest.2 . . . . . 6 𝑌 = 𝐾
7978toptopon 12201 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
8077, 79sylib 121 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐾 ∈ (TopOn‘𝑌))
812, 7sseldd 3098 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝑃𝑋)
82 iscnp 12384 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8376, 80, 81, 82syl3anc 1216 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
84 simprr 521 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → 𝐹:𝑋𝑌)
8584biantrurd 303 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
8683, 85bitr4d 190 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
87 simp1l 1005 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ Top)
8887, 75sylib 121 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐽 ∈ (TopOn‘𝑋))
89 simp1r 1006 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐴𝑋)
90 resttopon 12356 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9188, 89, 90syl2anc 408 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
92 simp3 983 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
9392, 79sylib 121 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘𝑌))
9443ad2ant1 1002 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
95 simp2l 1007 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃 ∈ ((int‘𝐽)‘𝐴))
9694, 95sseldd 3098 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝑃𝐴)
97 iscnp 12384 . . . . 5 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝐴) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
9891, 93, 96, 97syl3anc 1216 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
99 simp2r 1008 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → 𝐹:𝑋𝑌)
10099, 89fssresd 5299 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (𝐹𝐴):𝐴𝑌)
101100biantrurd 303 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → (∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)) ↔ ((𝐹𝐴):𝐴𝑌 ∧ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦)))))
10298, 101bitr4d 190 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌) ∧ 𝐾 ∈ Top) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
1031, 2, 6, 84, 77, 102syl221anc 1227 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → ((𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃) ↔ ∀𝑦𝐾 (((𝐹𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽t 𝐴)(𝑃𝑧 ∧ ((𝐹𝐴) “ 𝑧) ⊆ 𝑦))))
10474, 86, 1033bitr4d 219 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  cin 3070  wss 3071   cuni 3736  cres 4541  cima 4542  wf 5119  cfv 5123  (class class class)co 5774  t crest 12136  Topctop 12180  TopOnctopon 12193  intcnt 12278   CnP ccnp 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-rest 12138  df-topgen 12157  df-top 12181  df-topon 12194  df-bases 12226  df-ntr 12281  df-cnp 12374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator