| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reubida | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| reubida.1 | ⊢ Ⅎ𝑥𝜑 | 
| reubida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| reubida | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reubida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | reubida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 452 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 4 | 1, 3 | eubid 2052 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 5 | df-reu 2482 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | df-reu 2482 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 ∃!weu 2045 ∈ wcel 2167 ∃!wreu 2477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 df-reu 2482 | 
| This theorem is referenced by: reubidva 2680 | 
| Copyright terms: Public domain | W3C validator |