ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubida GIF version

Theorem reubida 2647
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
reubida.1 𝑥𝜑
reubida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
reubida (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))

Proof of Theorem reubida
StepHypRef Expression
1 reubida.1 . . 3 𝑥𝜑
2 reubida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.32da 448 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3eubid 2021 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑥(𝑥𝐴𝜒)))
5 df-reu 2451 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
6 df-reu 2451 . 2 (∃!𝑥𝐴 𝜒 ↔ ∃!𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 222 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wnf 1448  ∃!weu 2014  wcel 2136  ∃!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017  df-reu 2451
This theorem is referenced by:  reubidva  2648
  Copyright terms: Public domain W3C validator