Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubid | GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubid.1 | ⊢ Ⅎ𝑥𝜑 |
eubid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubid | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | eubid.2 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | bibi1d 232 | . . . 4 ⊢ (𝜑 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜒 ↔ 𝑥 = 𝑦))) |
4 | 1, 3 | albid 1603 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
5 | 4 | exbidv 1813 | . 2 ⊢ (𝜑 → (∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
6 | df-eu 2017 | . 2 ⊢ (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦)) | |
7 | df-eu 2017 | . 2 ⊢ (∃!𝑥𝜒 ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 ∃!weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-eu 2017 |
This theorem is referenced by: eubidv 2022 mobid 2049 reubida 2647 reueq1f 2659 eusv2i 4433 |
Copyright terms: Public domain | W3C validator |