ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubid GIF version

Theorem eubid 2013
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1 𝑥𝜑
eubid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eubid (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))

Proof of Theorem eubid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4 𝑥𝜑
2 eubid.2 . . . . 5 (𝜑 → (𝜓𝜒))
32bibi1d 232 . . . 4 (𝜑 → ((𝜓𝑥 = 𝑦) ↔ (𝜒𝑥 = 𝑦)))
41, 3albid 1595 . . 3 (𝜑 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜒𝑥 = 𝑦)))
54exbidv 1805 . 2 (𝜑 → (∃𝑦𝑥(𝜓𝑥 = 𝑦) ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦)))
6 df-eu 2009 . 2 (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
7 df-eu 2009 . 2 (∃!𝑥𝜒 ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦))
85, 6, 73bitr4g 222 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1333  wnf 1440  wex 1472  ∃!weu 2006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-eu 2009
This theorem is referenced by:  eubidv  2014  mobid  2041  reubida  2638  reueq1f  2650  eusv2i  4417
  Copyright terms: Public domain W3C validator