ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubid GIF version

Theorem eubid 2062
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1 𝑥𝜑
eubid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eubid (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))

Proof of Theorem eubid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4 𝑥𝜑
2 eubid.2 . . . . 5 (𝜑 → (𝜓𝜒))
32bibi1d 233 . . . 4 (𝜑 → ((𝜓𝑥 = 𝑦) ↔ (𝜒𝑥 = 𝑦)))
41, 3albid 1639 . . 3 (𝜑 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜒𝑥 = 𝑦)))
54exbidv 1849 . 2 (𝜑 → (∃𝑦𝑥(𝜓𝑥 = 𝑦) ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦)))
6 df-eu 2058 . 2 (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
7 df-eu 2058 . 2 (∃!𝑥𝜒 ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦))
85, 6, 73bitr4g 223 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wnf 1484  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058
This theorem is referenced by:  eubidv  2063  mobid  2090  reubida  2689  reueq1f  2701  eusv2i  4509
  Copyright terms: Public domain W3C validator