| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubid | GIF version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubid.1 | ⊢ Ⅎ𝑥𝜑 |
| eubid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubid | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eubid.2 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | bibi1d 233 | . . . 4 ⊢ (𝜑 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜒 ↔ 𝑥 = 𝑦))) |
| 4 | 1, 3 | albid 1639 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
| 5 | 4 | exbidv 1849 | . 2 ⊢ (𝜑 → (∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
| 6 | df-eu 2058 | . 2 ⊢ (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦)) | |
| 7 | df-eu 2058 | . 2 ⊢ (∃!𝑥𝜒 ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: eubidv 2063 mobid 2090 reubida 2689 reueq1f 2701 eusv2i 4509 |
| Copyright terms: Public domain | W3C validator |