ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabxy GIF version

Theorem nfrabxy 2646
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabxy.1 𝑥𝜑
nfrabxy.2 𝑥𝐴
Assertion
Ref Expression
nfrabxy 𝑥{𝑦𝐴𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrabxy
StepHypRef Expression
1 df-rab 2453 . 2 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
2 nfrabxy.2 . . . . 5 𝑥𝐴
32nfcri 2302 . . . 4 𝑥 𝑦𝐴
4 nfrabxy.1 . . . 4 𝑥𝜑
53, 4nfan 1553 . . 3 𝑥(𝑦𝐴𝜑)
65nfab 2313 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝜑)}
71, 6nfcxfr 2305 1 𝑥{𝑦𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1448  wcel 2136  {cab 2151  wnfc 2295  {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453
This theorem is referenced by:  nfdif  3243  nfin  3328  nfse  4319  elfvmptrab1  5580  mpoxopoveq  6208  nfsup  6957  caucvgprprlemaddq  7649  ctiunct  12373
  Copyright terms: Public domain W3C validator