ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabxy GIF version

Theorem nfrabxy 2650
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabxy.1 𝑥𝜑
nfrabxy.2 𝑥𝐴
Assertion
Ref Expression
nfrabxy 𝑥{𝑦𝐴𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrabxy
StepHypRef Expression
1 df-rab 2457 . 2 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
2 nfrabxy.2 . . . . 5 𝑥𝐴
32nfcri 2306 . . . 4 𝑥 𝑦𝐴
4 nfrabxy.1 . . . 4 𝑥𝜑
53, 4nfan 1558 . . 3 𝑥(𝑦𝐴𝜑)
65nfab 2317 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝜑)}
71, 6nfcxfr 2309 1 𝑥{𝑦𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1453  wcel 2141  {cab 2156  wnfc 2299  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457
This theorem is referenced by:  nfdif  3248  nfin  3333  nfse  4326  elfvmptrab1  5590  mpoxopoveq  6219  nfsup  6969  caucvgprprlemaddq  7670  ctiunct  12395
  Copyright terms: Public domain W3C validator