Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrabxy | GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.) |
Ref | Expression |
---|---|
nfrabxy.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabxy.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabxy | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nfrabxy.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfrabxy.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 3, 4 | nfan 1558 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | nfab 2317 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
7 | 1, 6 | nfcxfr 2309 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1453 ∈ wcel 2141 {cab 2156 Ⅎwnfc 2299 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 |
This theorem is referenced by: nfdif 3248 nfin 3333 nfse 4326 elfvmptrab1 5590 mpoxopoveq 6219 nfsup 6969 caucvgprprlemaddq 7670 ctiunct 12395 |
Copyright terms: Public domain | W3C validator |