Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdai GIF version

Theorem reximdai 2535
 Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
Hypotheses
Ref Expression
reximdai.1 𝑥𝜑
reximdai.2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
reximdai (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))

Proof of Theorem reximdai
StepHypRef Expression
1 reximdai.1 . . 3 𝑥𝜑
2 reximdai.2 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
31, 2ralrimi 2508 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
4 rexim 2531 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
53, 4syl 14 1 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4  Ⅎwnf 1437   ∈ wcel 2112  ∀wral 2418  ∃wrex 2419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-ial 1511 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-ral 2423  df-rex 2424 This theorem is referenced by:  reximdvai  2537  bezoutlemstep  11757  isomninnlem  13444  ismkvnnlem  13466
 Copyright terms: Public domain W3C validator