ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdai GIF version

Theorem reximdai 2505
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
Hypotheses
Ref Expression
reximdai.1 𝑥𝜑
reximdai.2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
reximdai (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))

Proof of Theorem reximdai
StepHypRef Expression
1 reximdai.1 . . 3 𝑥𝜑
2 reximdai.2 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
31, 2ralrimi 2478 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
4 rexim 2501 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
53, 4syl 14 1 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1419  wcel 1463  wral 2391  wrex 2392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-ral 2396  df-rex 2397
This theorem is referenced by:  reximdvai  2507  bezoutlemstep  11581  isomninnlem  13027
  Copyright terms: Public domain W3C validator