| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexim | GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 2 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴)) |
| 4 | pm3.31 262 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) | |
| 5 | 3, 4 | jcad 307 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 6 | 5 | alimi 1469 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 7 | 1, 6 | sylbi 121 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 8 | exim 1613 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 10 | df-rex 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 11 | df-rex 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 12 | 9, 10, 11 | 3imtr4g 205 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: reximia 2592 reximdai 2595 r19.29 2634 reupick2 3449 ss2iun 3931 chfnrn 5673 |
| Copyright terms: Public domain | W3C validator |