Step | Hyp | Ref
| Expression |
1 | | isomnimap 7113 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o))) |
2 | | fveq1 5495 |
. . . . . . . . 9
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (𝑔‘𝑥) = ((◡𝐺 ∘ 𝑓)‘𝑥)) |
3 | 2 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → ((𝑔‘𝑥) = ∅ ↔ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅)) |
4 | 3 | rexbidv 2471 |
. . . . . . 7
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅)) |
5 | 2 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → ((𝑔‘𝑥) = 1o ↔ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
6 | 5 | ralbidv 2470 |
. . . . . . 7
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
7 | 4, 6 | orbi12d 788 |
. . . . . 6
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → ((∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o))) |
8 | | simplr 525 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
9 | | isomninnlem.g |
. . . . . . . . 9
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
10 | 9 | 012of 14028 |
. . . . . . . 8
⊢ (◡𝐺 ↾ {0, 1}):{0,
1}⟶2o |
11 | | elmapi 6648 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1}) |
12 | 11 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝑓:𝐴⟶{0, 1}) |
13 | | fco2 5364 |
. . . . . . . 8
⊢ (((◡𝐺 ↾ {0, 1}):{0, 1}⟶2o
∧ 𝑓:𝐴⟶{0, 1}) → (◡𝐺 ∘ 𝑓):𝐴⟶2o) |
14 | 10, 12, 13 | sylancr 412 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (◡𝐺 ∘ 𝑓):𝐴⟶2o) |
15 | | 2onn 6500 |
. . . . . . . . 9
⊢
2o ∈ ω |
16 | 15 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 2o
∈ ω) |
17 | | simpll 524 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝐴 ∈ 𝑉) |
18 | 16, 17 | elmapd 6640 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ((◡𝐺 ∘ 𝑓) ∈ (2o
↑𝑚 𝐴) ↔ (◡𝐺 ∘ 𝑓):𝐴⟶2o)) |
19 | 14, 18 | mpbird 166 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (◡𝐺 ∘ 𝑓) ∈ (2o
↑𝑚 𝐴)) |
20 | 7, 8, 19 | rspcdva 2839 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∃𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
21 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
22 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(2o ↑𝑚
𝐴) |
23 | | nfre1 2513 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ |
24 | | nfra1 2501 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o |
25 | 23, 24 | nfor 1567 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
26 | 22, 25 | nfralxy 2508 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
27 | 21, 26 | nfan 1558 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
28 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 ∈ ({0, 1}
↑𝑚 𝐴) |
29 | 27, 28 | nfan 1558 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) |
30 | 9 | frechashgf1o 10384 |
. . . . . . . . . . 11
⊢ 𝐺:ω–1-1-onto→ℕ0 |
31 | | 0nn0 9150 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
32 | | 1nn0 9151 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
33 | | prssi 3738 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
34 | 31, 32, 33 | mp2an 424 |
. . . . . . . . . . . 12
⊢ {0, 1}
⊆ ℕ0 |
35 | 11 | ad2antlr 486 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓:𝐴⟶{0, 1}) |
36 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
37 | 35, 36 | ffvelrnd 5632 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ {0, 1}) |
38 | 34, 37 | sselid 3145 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈
ℕ0) |
39 | | f1ocnvfv2 5757 |
. . . . . . . . . . 11
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑓‘𝑥) ∈ ℕ0) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
40 | 30, 38, 39 | sylancr 412 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
41 | 40 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
42 | | fvco3 5567 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴⟶{0, 1} ∧ 𝑥 ∈ 𝐴) → ((◡𝐺 ∘ 𝑓)‘𝑥) = (◡𝐺‘(𝑓‘𝑥))) |
43 | 35, 42 | sylancom 418 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺 ∘ 𝑓)‘𝑥) = (◡𝐺‘(𝑓‘𝑥))) |
44 | 43 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ ↔ (◡𝐺‘(𝑓‘𝑥)) = ∅)) |
45 | 44 | biimpa 294 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅) → (◡𝐺‘(𝑓‘𝑥)) = ∅) |
46 | 45 | fveq2d 5500 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘∅)) |
47 | | 0zd 9224 |
. . . . . . . . . . . 12
⊢ (⊤
→ 0 ∈ ℤ) |
48 | 47, 9 | frec2uz0d 10355 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝐺‘∅) =
0) |
49 | 48 | mptru 1357 |
. . . . . . . . . 10
⊢ (𝐺‘∅) =
0 |
50 | 46, 49 | eqtrdi 2219 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = 0) |
51 | 41, 50 | eqtr3d 2205 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅) → (𝑓‘𝑥) = 0) |
52 | 51 | exp31 362 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (𝑥 ∈ 𝐴 → (((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ → (𝑓‘𝑥) = 0))) |
53 | 29, 52 | reximdai 2568 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∃𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
54 | 40 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
55 | 43 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → ((◡𝐺 ∘ 𝑓)‘𝑥) = (◡𝐺‘(𝑓‘𝑥))) |
56 | | simpr 109 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) |
57 | 55, 56 | eqtr3d 2205 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (◡𝐺‘(𝑓‘𝑥)) = 1o) |
58 | 57 | fveq2d 5500 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o)) |
59 | | df-1o 6395 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
60 | 59 | fveq2i 5499 |
. . . . . . . . . . 11
⊢ (𝐺‘1o) = (𝐺‘suc
∅) |
61 | | peano1 4578 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ ω |
62 | 61 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ∅ ∈ ω) |
63 | 47, 9, 62 | frec2uzsucd 10357 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝐺‘suc
∅) = ((𝐺‘∅) + 1)) |
64 | 63 | mptru 1357 |
. . . . . . . . . . 11
⊢ (𝐺‘suc ∅) = ((𝐺‘∅) +
1) |
65 | 49 | oveq1i 5863 |
. . . . . . . . . . . 12
⊢ ((𝐺‘∅) + 1) = (0 +
1) |
66 | | 0p1e1 8992 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
67 | 65, 66 | eqtri 2191 |
. . . . . . . . . . 11
⊢ ((𝐺‘∅) + 1) =
1 |
68 | 60, 64, 67 | 3eqtri 2195 |
. . . . . . . . . 10
⊢ (𝐺‘1o) =
1 |
69 | 58, 68 | eqtrdi 2219 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = 1) |
70 | 54, 69 | eqtr3d 2205 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (𝑓‘𝑥) = 1) |
71 | 70 | ex 114 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((◡𝐺 ∘ 𝑓)‘𝑥) = 1o → (𝑓‘𝑥) = 1)) |
72 | 29, 71 | ralimdaa 2536 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
73 | 53, 72 | orim12d 781 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ((∃𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
74 | 20, 73 | mpd 13 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
75 | 74 | ralrimiva 2543 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) → ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
76 | | fveq1 5495 |
. . . . . . . . 9
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (𝑓‘𝑥) = ((𝐺 ∘ 𝑔)‘𝑥)) |
77 | 76 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑓 = (𝐺 ∘ 𝑔) → ((𝑓‘𝑥) = 0 ↔ ((𝐺 ∘ 𝑔)‘𝑥) = 0)) |
78 | 77 | rexbidv 2471 |
. . . . . . 7
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ↔ ∃𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 0)) |
79 | 76 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑓 = (𝐺 ∘ 𝑔) → ((𝑓‘𝑥) = 1 ↔ ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
80 | 79 | ralbidv 2470 |
. . . . . . 7
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 ↔ ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
81 | 78, 80 | orbi12d 788 |
. . . . . 6
⊢ (𝑓 = (𝐺 ∘ 𝑔) → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ↔ (∃𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1))) |
82 | | simplr 525 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
83 | 9 | 2o01f 14029 |
. . . . . . . 8
⊢ (𝐺 ↾
2o):2o⟶{0, 1} |
84 | | elmapi 6648 |
. . . . . . . . 9
⊢ (𝑔 ∈ (2o
↑𝑚 𝐴) → 𝑔:𝐴⟶2o) |
85 | 84 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝑔:𝐴⟶2o) |
86 | | fco2 5364 |
. . . . . . . 8
⊢ (((𝐺 ↾
2o):2o⟶{0, 1} ∧ 𝑔:𝐴⟶2o) → (𝐺 ∘ 𝑔):𝐴⟶{0, 1}) |
87 | 83, 85, 86 | sylancr 412 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝐺 ∘ 𝑔):𝐴⟶{0, 1}) |
88 | | prexg 4196 |
. . . . . . . . . 10
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
∈ V) |
89 | 31, 32, 88 | mp2an 424 |
. . . . . . . . 9
⊢ {0, 1}
∈ V |
90 | 89 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → {0, 1} ∈ V) |
91 | | simpll 524 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ 𝑉) |
92 | 90, 91 | elmapd 6640 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ((𝐺 ∘ 𝑔) ∈ ({0, 1} ↑𝑚
𝐴) ↔ (𝐺 ∘ 𝑔):𝐴⟶{0, 1})) |
93 | 87, 92 | mpbird 166 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝐺 ∘ 𝑔) ∈ ({0, 1} ↑𝑚
𝐴)) |
94 | 81, 82, 93 | rspcdva 2839 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
95 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑥({0,
1} ↑𝑚 𝐴) |
96 | | nfre1 2513 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 |
97 | | nfra1 2501 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 |
98 | 96, 97 | nfor 1567 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
99 | 95, 98 | nfralxy 2508 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
100 | 21, 99 | nfan 1558 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
101 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑔 ∈ (2o
↑𝑚 𝐴) |
102 | 100, 101 | nfan 1558 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) |
103 | 84 | ad2antlr 486 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶2o) |
104 | | omelon 4593 |
. . . . . . . . . . . . . . . 16
⊢ ω
∈ On |
105 | 104 | onelssi 4414 |
. . . . . . . . . . . . . . 15
⊢
(2o ∈ ω → 2o ⊆
ω) |
106 | 15, 105 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
2o ⊆ ω |
107 | 106 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 2o ⊆
ω) |
108 | 103, 107 | fssd 5360 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶ω) |
109 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
110 | 108, 109 | ffvelrnd 5632 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ω) |
111 | | f1ocnvfv1 5756 |
. . . . . . . . . . 11
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑔‘𝑥) ∈ ω) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
112 | 30, 110, 111 | sylancr 412 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
113 | 112 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 0) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
114 | | fvco3 5567 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:𝐴⟶2o ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝑔)‘𝑥) = (𝐺‘(𝑔‘𝑥))) |
115 | 103, 114 | sylancom 418 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝑔)‘𝑥) = (𝐺‘(𝑔‘𝑥))) |
116 | 115 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝑔)‘𝑥) = 0 ↔ (𝐺‘(𝑔‘𝑥)) = 0)) |
117 | 116 | biimpa 294 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 0) → (𝐺‘(𝑔‘𝑥)) = 0) |
118 | 117 | fveq2d 5500 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 0) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘0)) |
119 | | f1ocnvfv 5758 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈
ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) |
120 | 30, 61, 119 | mp2an 424 |
. . . . . . . . . . 11
⊢ ((𝐺‘∅) = 0 →
(◡𝐺‘0) = ∅) |
121 | 49, 120 | ax-mp 5 |
. . . . . . . . . 10
⊢ (◡𝐺‘0) = ∅ |
122 | 118, 121 | eqtrdi 2219 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 0) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = ∅) |
123 | 113, 122 | eqtr3d 2205 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 0) → (𝑔‘𝑥) = ∅) |
124 | 123 | exp31 362 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝑥 ∈ 𝐴 → (((𝐺 ∘ 𝑔)‘𝑥) = 0 → (𝑔‘𝑥) = ∅))) |
125 | 102, 124 | reximdai 2568 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 0 → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
126 | 112 | adantr 274 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
127 | 115 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝑔)‘𝑥) = 1 ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
128 | 127 | biimpa 294 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (𝐺‘(𝑔‘𝑥)) = 1) |
129 | 128 | fveq2d 5500 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘1)) |
130 | | 1onn 6499 |
. . . . . . . . . . . 12
⊢
1o ∈ ω |
131 | | f1ocnvfv 5758 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈
ω) → ((𝐺‘1o) = 1 → (◡𝐺‘1) = 1o)) |
132 | 30, 130, 131 | mp2an 424 |
. . . . . . . . . . 11
⊢ ((𝐺‘1o) = 1 →
(◡𝐺‘1) = 1o) |
133 | 68, 132 | ax-mp 5 |
. . . . . . . . . 10
⊢ (◡𝐺‘1) = 1o |
134 | 129, 133 | eqtrdi 2219 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = 1o) |
135 | 126, 134 | eqtr3d 2205 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (𝑔‘𝑥) = 1o) |
136 | 135 | ex 114 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝑔)‘𝑥) = 1 → (𝑔‘𝑥) = 1o)) |
137 | 102, 136 | ralimdaa 2536 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1 → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
138 | 125, 137 | orim12d 781 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ((∃𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1) → (∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o))) |
139 | 94, 138 | mpd 13 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
140 | 139 | ralrimiva 2543 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
141 | 75, 140 | impbida 591 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑔 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |
142 | 1, 141 | bitrd 187 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) |