![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > structfn | GIF version |
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structfn.1 | ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 |
Ref | Expression |
---|---|
structfn | ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structfn.1 | . . 3 ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 | |
2 | 1 | structfun 11661 | . 2 ⊢ Fun ◡◡𝐹 |
3 | isstructim 11657 | . . . . 5 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | |
4 | 1, 3 | ax-mp 7 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) |
5 | 4 | simp3i 957 | . . 3 ⊢ dom 𝐹 ⊆ (𝑀...𝑁) |
6 | 4 | simp1i 955 | . . . . . 6 ⊢ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) |
7 | 6 | simp1i 955 | . . . . 5 ⊢ 𝑀 ∈ ℕ |
8 | elnnuz 9154 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
9 | 7, 8 | mpbi 144 | . . . 4 ⊢ 𝑀 ∈ (ℤ≥‘1) |
10 | fzss1 9626 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘1) → (𝑀...𝑁) ⊆ (1...𝑁)) | |
11 | 9, 10 | ax-mp 7 | . . 3 ⊢ (𝑀...𝑁) ⊆ (1...𝑁) |
12 | 5, 11 | sstri 3048 | . 2 ⊢ dom 𝐹 ⊆ (1...𝑁) |
13 | 2, 12 | pm3.2i 267 | 1 ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∧ w3a 927 ∈ wcel 1445 ∖ cdif 3010 ⊆ wss 3013 ∅c0 3302 {csn 3466 〈cop 3469 class class class wbr 3867 ◡ccnv 4466 dom cdm 4467 Fun wfun 5043 ‘cfv 5049 (class class class)co 5690 1c1 7448 ≤ cle 7620 ℕcn 8520 ℤ≥cuz 9118 ...cfz 9573 Struct cstr 11639 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-z 8849 df-uz 9119 df-fz 9574 df-struct 11645 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |