| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structfn | GIF version | ||
| Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| structfn.1 | ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 |
| Ref | Expression |
|---|---|
| structfn | ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structfn.1 | . . 3 ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 | |
| 2 | 1 | structfun 12965 | . 2 ⊢ Fun ◡◡𝐹 |
| 3 | isstructim 12961 | . . . . 5 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | |
| 4 | 1, 3 | ax-mp 5 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) |
| 5 | 4 | simp3i 1011 | . . 3 ⊢ dom 𝐹 ⊆ (𝑀...𝑁) |
| 6 | 4 | simp1i 1009 | . . . . . 6 ⊢ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) |
| 7 | 6 | simp1i 1009 | . . . . 5 ⊢ 𝑀 ∈ ℕ |
| 8 | elnnuz 9720 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
| 9 | 7, 8 | mpbi 145 | . . . 4 ⊢ 𝑀 ∈ (ℤ≥‘1) |
| 10 | fzss1 10220 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘1) → (𝑀...𝑁) ⊆ (1...𝑁)) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑀...𝑁) ⊆ (1...𝑁) |
| 12 | 5, 11 | sstri 3210 | . 2 ⊢ dom 𝐹 ⊆ (1...𝑁) |
| 13 | 2, 12 | pm3.2i 272 | 1 ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 981 ∈ wcel 2178 ∖ cdif 3171 ⊆ wss 3174 ∅c0 3468 {csn 3643 〈cop 3646 class class class wbr 4059 ◡ccnv 4692 dom cdm 4693 Fun wfun 5284 ‘cfv 5290 (class class class)co 5967 1c1 7961 ≤ cle 8143 ℕcn 9071 ℤ≥cuz 9683 ...cfz 10165 Struct cstr 12943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 df-uz 9684 df-fz 10166 df-struct 12949 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |