Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > structfn | GIF version |
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structfn.1 | ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 |
Ref | Expression |
---|---|
structfn | ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structfn.1 | . . 3 ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 | |
2 | 1 | structfun 12412 | . 2 ⊢ Fun ◡◡𝐹 |
3 | isstructim 12408 | . . . . 5 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | |
4 | 1, 3 | ax-mp 5 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) |
5 | 4 | simp3i 998 | . . 3 ⊢ dom 𝐹 ⊆ (𝑀...𝑁) |
6 | 4 | simp1i 996 | . . . . . 6 ⊢ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) |
7 | 6 | simp1i 996 | . . . . 5 ⊢ 𝑀 ∈ ℕ |
8 | elnnuz 9502 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
9 | 7, 8 | mpbi 144 | . . . 4 ⊢ 𝑀 ∈ (ℤ≥‘1) |
10 | fzss1 9998 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘1) → (𝑀...𝑁) ⊆ (1...𝑁)) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑀...𝑁) ⊆ (1...𝑁) |
12 | 5, 11 | sstri 3151 | . 2 ⊢ dom 𝐹 ⊆ (1...𝑁) |
13 | 2, 12 | pm3.2i 270 | 1 ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 ∖ cdif 3113 ⊆ wss 3116 ∅c0 3409 {csn 3576 〈cop 3579 class class class wbr 3982 ◡ccnv 4603 dom cdm 4604 Fun wfun 5182 ‘cfv 5188 (class class class)co 5842 1c1 7754 ≤ cle 7934 ℕcn 8857 ℤ≥cuz 9466 ...cfz 9944 Struct cstr 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-z 9192 df-uz 9467 df-fz 9945 df-struct 12396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |