| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 1021 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp1bi 1036 erinxp 6764 exmidapne 7454 addcanprleml 7809 addcanprlemu 7810 ltmprr 7837 lelttrdi 8581 ixxdisj 10107 ixxss1 10108 ixxss2 10109 ixxss12 10110 iccss2 10148 iocssre 10157 icossre 10158 iccssre 10159 icodisj 10196 iccf1o 10208 fzen 10247 ioom 10488 intfracq 10550 flqdiv 10551 mulqaddmodid 10594 modsumfzodifsn 10626 addmodlteq 10628 remul 11391 sumtp 11933 crth 12754 phimullem 12755 eulerthlem1 12757 eulerthlemfi 12758 eulerthlemrprm 12759 eulerthlema 12760 eulerthlemh 12761 eulerthlemth 12762 ctiunct 13019 strsetsid 13073 strleund 13144 strext 13146 mhmf 13506 submss 13517 eqger 13769 eqgcpbl 13773 lmodvscl 14277 lssssg 14332 rnglidlmsgrp 14469 2idlcpblrng 14495 lmfpm 14925 lmff 14931 lmtopcnp 14932 xmeter 15118 tgqioo 15237 ivthinclemlopn 15318 ivthinclemuopn 15320 limcimolemlt 15346 limcresi 15348 cosordlem 15531 relogbval 15633 relogbzcl 15634 nnlogbexp 15641 perfectlem2 15682 wlkprop 16048 wlkf 16051 wlkfg 16052 wlkvtxiedg 16066 wlk1walkdom 16080 wlkvtxedg 16084 upgr2wlkdc 16096 |
| Copyright terms: Public domain | W3C validator |