| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp1bi 1015 erinxp 6703 exmidapne 7379 addcanprleml 7734 addcanprlemu 7735 ltmprr 7762 lelttrdi 8506 ixxdisj 10032 ixxss1 10033 ixxss2 10034 ixxss12 10035 iccss2 10073 iocssre 10082 icossre 10083 iccssre 10084 icodisj 10121 iccf1o 10133 fzen 10172 ioom 10410 intfracq 10472 flqdiv 10473 mulqaddmodid 10516 modsumfzodifsn 10548 addmodlteq 10550 remul 11227 sumtp 11769 crth 12590 phimullem 12591 eulerthlem1 12593 eulerthlemfi 12594 eulerthlemrprm 12595 eulerthlema 12596 eulerthlemh 12597 eulerthlemth 12598 ctiunct 12855 strsetsid 12909 strleund 12979 strext 12981 mhmf 13341 submss 13352 eqger 13604 eqgcpbl 13608 lmodvscl 14111 lssssg 14166 rnglidlmsgrp 14303 2idlcpblrng 14329 lmfpm 14759 lmff 14765 lmtopcnp 14766 xmeter 14952 tgqioo 15071 ivthinclemlopn 15152 ivthinclemuopn 15154 limcimolemlt 15180 limcresi 15182 cosordlem 15365 relogbval 15467 relogbzcl 15468 nnlogbexp 15475 perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |