Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp1 992 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simp1bi 1007 erinxp 6587 addcanprleml 7576 addcanprlemu 7577 ltmprr 7604 lelttrdi 8345 ixxdisj 9860 ixxss1 9861 ixxss2 9862 ixxss12 9863 iccss2 9901 iocssre 9910 icossre 9911 iccssre 9912 icodisj 9949 iccf1o 9961 fzen 9999 ioom 10217 intfracq 10276 flqdiv 10277 mulqaddmodid 10320 modsumfzodifsn 10352 addmodlteq 10354 remul 10836 sumtp 11377 crth 12178 phimullem 12179 eulerthlem1 12181 eulerthlemfi 12182 eulerthlemrprm 12183 eulerthlema 12184 eulerthlemh 12185 eulerthlemth 12186 ctiunct 12395 strsetsid 12449 strleund 12506 mhmf 12688 submss 12698 lmfpm 13037 lmff 13043 lmtopcnp 13044 xmeter 13230 tgqioo 13341 ivthinclemlopn 13408 ivthinclemuopn 13410 limcimolemlt 13427 limcresi 13429 cosordlem 13564 relogbval 13663 relogbzcl 13664 nnlogbexp 13671 |
Copyright terms: Public domain | W3C validator |