| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp1bi 1014 erinxp 6677 exmidapne 7345 addcanprleml 7700 addcanprlemu 7701 ltmprr 7728 lelttrdi 8472 ixxdisj 9997 ixxss1 9998 ixxss2 9999 ixxss12 10000 iccss2 10038 iocssre 10047 icossre 10048 iccssre 10049 icodisj 10086 iccf1o 10098 fzen 10137 ioom 10369 intfracq 10431 flqdiv 10432 mulqaddmodid 10475 modsumfzodifsn 10507 addmodlteq 10509 remul 11056 sumtp 11598 crth 12419 phimullem 12420 eulerthlem1 12422 eulerthlemfi 12423 eulerthlemrprm 12424 eulerthlema 12425 eulerthlemh 12426 eulerthlemth 12427 ctiunct 12684 strsetsid 12738 strleund 12808 strext 12810 mhmf 13169 submss 13180 eqger 13432 eqgcpbl 13436 lmodvscl 13939 lssssg 13994 rnglidlmsgrp 14131 2idlcpblrng 14157 lmfpm 14587 lmff 14593 lmtopcnp 14594 xmeter 14780 tgqioo 14899 ivthinclemlopn 14980 ivthinclemuopn 14982 limcimolemlt 15008 limcresi 15010 cosordlem 15193 relogbval 15295 relogbzcl 15296 nnlogbexp 15303 perfectlem2 15344 |
| Copyright terms: Public domain | W3C validator |