Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp1 982 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: simp1bi 997 erinxp 6543 addcanprleml 7513 addcanprlemu 7514 ltmprr 7541 lelttrdi 8280 ixxdisj 9785 ixxss1 9786 ixxss2 9787 ixxss12 9788 iccss2 9826 iocssre 9835 icossre 9836 iccssre 9837 icodisj 9874 iccf1o 9886 fzen 9923 ioom 10138 intfracq 10197 flqdiv 10198 mulqaddmodid 10241 modsumfzodifsn 10273 addmodlteq 10275 remul 10749 sumtp 11288 crth 12068 phimullem 12069 eulerthlem1 12071 eulerthlemfi 12072 eulerthlemrprm 12073 eulerthlema 12074 eulerthlemh 12075 eulerthlemth 12076 ctiunct 12128 strsetsid 12170 strleund 12225 lmfpm 12590 lmff 12596 lmtopcnp 12597 xmeter 12783 tgqioo 12894 ivthinclemlopn 12961 ivthinclemuopn 12963 limcimolemlt 12980 limcresi 12982 cosordlem 13117 relogbval 13215 relogbzcl 13216 nnlogbexp 13223 |
Copyright terms: Public domain | W3C validator |