![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp1bi 1014 erinxp 6665 exmidapne 7322 addcanprleml 7676 addcanprlemu 7677 ltmprr 7704 lelttrdi 8447 ixxdisj 9972 ixxss1 9973 ixxss2 9974 ixxss12 9975 iccss2 10013 iocssre 10022 icossre 10023 iccssre 10024 icodisj 10061 iccf1o 10073 fzen 10112 ioom 10332 intfracq 10394 flqdiv 10395 mulqaddmodid 10438 modsumfzodifsn 10470 addmodlteq 10472 remul 11019 sumtp 11560 crth 12365 phimullem 12366 eulerthlem1 12368 eulerthlemfi 12369 eulerthlemrprm 12370 eulerthlema 12371 eulerthlemh 12372 eulerthlemth 12373 ctiunct 12600 strsetsid 12654 strleund 12724 strext 12726 mhmf 13040 submss 13051 eqger 13297 eqgcpbl 13301 lmodvscl 13804 lssssg 13859 rnglidlmsgrp 13996 2idlcpblrng 14022 lmfpm 14422 lmff 14428 lmtopcnp 14429 xmeter 14615 tgqioo 14734 ivthinclemlopn 14815 ivthinclemuopn 14817 limcimolemlt 14843 limcresi 14845 cosordlem 15025 relogbval 15124 relogbzcl 15125 nnlogbexp 15132 |
Copyright terms: Public domain | W3C validator |