| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Ref | Expression | 
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simp1bi 1014 erinxp 6668 exmidapne 7327 addcanprleml 7681 addcanprlemu 7682 ltmprr 7709 lelttrdi 8453 ixxdisj 9978 ixxss1 9979 ixxss2 9980 ixxss12 9981 iccss2 10019 iocssre 10028 icossre 10029 iccssre 10030 icodisj 10067 iccf1o 10079 fzen 10118 ioom 10350 intfracq 10412 flqdiv 10413 mulqaddmodid 10456 modsumfzodifsn 10488 addmodlteq 10490 remul 11037 sumtp 11579 crth 12392 phimullem 12393 eulerthlem1 12395 eulerthlemfi 12396 eulerthlemrprm 12397 eulerthlema 12398 eulerthlemh 12399 eulerthlemth 12400 ctiunct 12657 strsetsid 12711 strleund 12781 strext 12783 mhmf 13097 submss 13108 eqger 13354 eqgcpbl 13358 lmodvscl 13861 lssssg 13916 rnglidlmsgrp 14053 2idlcpblrng 14079 lmfpm 14479 lmff 14485 lmtopcnp 14486 xmeter 14672 tgqioo 14791 ivthinclemlopn 14872 ivthinclemuopn 14874 limcimolemlt 14900 limcresi 14902 cosordlem 15085 relogbval 15187 relogbzcl 15188 nnlogbexp 15195 perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |