Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp1 987 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simp1bi 1002 erinxp 6575 addcanprleml 7555 addcanprlemu 7556 ltmprr 7583 lelttrdi 8324 ixxdisj 9839 ixxss1 9840 ixxss2 9841 ixxss12 9842 iccss2 9880 iocssre 9889 icossre 9890 iccssre 9891 icodisj 9928 iccf1o 9940 fzen 9978 ioom 10196 intfracq 10255 flqdiv 10256 mulqaddmodid 10299 modsumfzodifsn 10331 addmodlteq 10333 remul 10814 sumtp 11355 crth 12156 phimullem 12157 eulerthlem1 12159 eulerthlemfi 12160 eulerthlemrprm 12161 eulerthlema 12162 eulerthlemh 12163 eulerthlemth 12164 ctiunct 12373 strsetsid 12427 strleund 12483 lmfpm 12883 lmff 12889 lmtopcnp 12890 xmeter 13076 tgqioo 13187 ivthinclemlopn 13254 ivthinclemuopn 13256 limcimolemlt 13273 limcresi 13275 cosordlem 13410 relogbval 13509 relogbzcl 13510 nnlogbexp 13517 |
Copyright terms: Public domain | W3C validator |