| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 1002 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simp1bi 1017 erinxp 6726 exmidapne 7414 addcanprleml 7769 addcanprlemu 7770 ltmprr 7797 lelttrdi 8541 ixxdisj 10067 ixxss1 10068 ixxss2 10069 ixxss12 10070 iccss2 10108 iocssre 10117 icossre 10118 iccssre 10119 icodisj 10156 iccf1o 10168 fzen 10207 ioom 10447 intfracq 10509 flqdiv 10510 mulqaddmodid 10553 modsumfzodifsn 10585 addmodlteq 10587 remul 11349 sumtp 11891 crth 12712 phimullem 12713 eulerthlem1 12715 eulerthlemfi 12716 eulerthlemrprm 12717 eulerthlema 12718 eulerthlemh 12719 eulerthlemth 12720 ctiunct 12977 strsetsid 13031 strleund 13102 strext 13104 mhmf 13464 submss 13475 eqger 13727 eqgcpbl 13731 lmodvscl 14234 lssssg 14289 rnglidlmsgrp 14426 2idlcpblrng 14452 lmfpm 14882 lmff 14888 lmtopcnp 14889 xmeter 15075 tgqioo 15194 ivthinclemlopn 15275 ivthinclemuopn 15277 limcimolemlt 15303 limcresi 15305 cosordlem 15488 relogbval 15590 relogbzcl 15591 nnlogbexp 15598 perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |