| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp1bi 1014 erinxp 6677 exmidapne 7343 addcanprleml 7698 addcanprlemu 7699 ltmprr 7726 lelttrdi 8470 ixxdisj 9995 ixxss1 9996 ixxss2 9997 ixxss12 9998 iccss2 10036 iocssre 10045 icossre 10046 iccssre 10047 icodisj 10084 iccf1o 10096 fzen 10135 ioom 10367 intfracq 10429 flqdiv 10430 mulqaddmodid 10473 modsumfzodifsn 10505 addmodlteq 10507 remul 11054 sumtp 11596 crth 12417 phimullem 12418 eulerthlem1 12420 eulerthlemfi 12421 eulerthlemrprm 12422 eulerthlema 12423 eulerthlemh 12424 eulerthlemth 12425 ctiunct 12682 strsetsid 12736 strleund 12806 strext 12808 mhmf 13167 submss 13178 eqger 13430 eqgcpbl 13434 lmodvscl 13937 lssssg 13992 rnglidlmsgrp 14129 2idlcpblrng 14155 lmfpm 14563 lmff 14569 lmtopcnp 14570 xmeter 14756 tgqioo 14875 ivthinclemlopn 14956 ivthinclemuopn 14958 limcimolemlt 14984 limcresi 14986 cosordlem 15169 relogbval 15271 relogbzcl 15272 nnlogbexp 15279 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |