ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 GIF version

Theorem lgsdir2lem3 15674
Description: Lemma for lgsdir2 15677. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → 𝐴 ∈ ℤ)
2 8nn 9246 . . . 4 8 ∈ ℕ
3 zmodfz 10535 . . . 4 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ (0...(8 − 1)))
41, 2, 3sylancl 413 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 − 1)))
5 8m1e7 9203 . . . 4 (8 − 1) = 7
65oveq2i 5985 . . 3 (0...(8 − 1)) = (0...7)
74, 6eleqtrdi 2302 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...7))
8 neg1z 9446 . . . . . . . 8 -1 ∈ ℤ
9 z0even 12388 . . . . . . . . 9 2 ∥ 0
10 1pneg1e0 9189 . . . . . . . . . 10 (1 + -1) = 0
11 ax-1cn 8060 . . . . . . . . . . 11 1 ∈ ℂ
12 neg1cn 9183 . . . . . . . . . . 11 -1 ∈ ℂ
1311, 12addcomi 8258 . . . . . . . . . 10 (1 + -1) = (-1 + 1)
1410, 13eqtr3i 2232 . . . . . . . . 9 0 = (-1 + 1)
159, 14breqtri 4087 . . . . . . . 8 2 ∥ (-1 + 1)
16 noel 3475 . . . . . . . . . . 11 ¬ (𝐴 mod 8) ∈ ∅
1716pm2.21i 649 . . . . . . . . . 10 ((𝐴 mod 8) ∈ ∅ → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
18 neg1lt0 9186 . . . . . . . . . . 11 -1 < 0
19 0z 9425 . . . . . . . . . . . 12 0 ∈ ℤ
20 fzn 10206 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) = ∅))
2119, 8, 20mp2an 426 . . . . . . . . . . 11 (-1 < 0 ↔ (0...-1) = ∅)
2218, 21mpbi 145 . . . . . . . . . 10 (0...-1) = ∅
2317, 22eleq2s 2304 . . . . . . . . 9 ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2423a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
258, 15, 243pm3.2i 1180 . . . . . . 7 (-1 ∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
26 1e0p1 9587 . . . . . . 7 1 = (0 + 1)
27 ssun1 3347 . . . . . . . 8 {1, 7} ⊆ ({1, 7} ∪ {3, 5})
28 1ex 8109 . . . . . . . . 9 1 ∈ V
2928prid1 3752 . . . . . . . 8 1 ∈ {1, 7}
3027, 29sselii 3201 . . . . . . 7 1 ∈ ({1, 7} ∪ {3, 5})
3125, 14, 26, 30lgsdir2lem2 15673 . . . . . 6 (1 ∈ ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
32 df-2 9137 . . . . . 6 2 = (1 + 1)
33 df-3 9138 . . . . . 6 3 = (2 + 1)
34 ssun2 3348 . . . . . . 7 {3, 5} ⊆ ({1, 7} ∪ {3, 5})
35 3ex 9154 . . . . . . . 8 3 ∈ V
3635prid1 3752 . . . . . . 7 3 ∈ {3, 5}
3734, 36sselii 3201 . . . . . 6 3 ∈ ({1, 7} ∪ {3, 5})
3831, 32, 33, 37lgsdir2lem2 15673 . . . . 5 (3 ∈ ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
39 df-4 9139 . . . . 5 4 = (3 + 1)
40 df-5 9140 . . . . 5 5 = (4 + 1)
41 5nn 9243 . . . . . . . 8 5 ∈ ℕ
4241elexi 2792 . . . . . . 7 5 ∈ V
4342prid2 3753 . . . . . 6 5 ∈ {3, 5}
4434, 43sselii 3201 . . . . 5 5 ∈ ({1, 7} ∪ {3, 5})
4538, 39, 40, 44lgsdir2lem2 15673 . . . 4 (5 ∈ ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
46 df-6 9141 . . . 4 6 = (5 + 1)
47 df-7 9142 . . . 4 7 = (6 + 1)
48 7nn 9245 . . . . . . 7 7 ∈ ℕ
4948elexi 2792 . . . . . 6 7 ∈ V
5049prid2 3753 . . . . 5 7 ∈ {1, 7}
5127, 50sselii 3201 . . . 4 7 ∈ ({1, 7} ∪ {3, 5})
5245, 46, 47, 51lgsdir2lem2 15673 . . 3 (7 ∈ ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
5352simp3i 1013 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
547, 53mpd 13 1 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  cun 3175  c0 3471  {cpr 3647   class class class wbr 4062  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970   < clt 8149  cmin 8285  -cneg 8286  cn 9078  2c2 9129  3c3 9130  4c4 9131  5c5 9132  6c6 9133  7c7 9134  8c8 9135  cz 9414  ...cfz 10172   mod cmo 10511  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fl 10457  df-mod 10512  df-dvds 12265
This theorem is referenced by:  lgsdir2  15677  2lgslem3  15745  2lgsoddprmlem3  15755
  Copyright terms: Public domain W3C validator