ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 GIF version

Theorem lgsdir2lem3 15379
Description: Lemma for lgsdir2 15382. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → 𝐴 ∈ ℤ)
2 8nn 9177 . . . 4 8 ∈ ℕ
3 zmodfz 10457 . . . 4 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ (0...(8 − 1)))
41, 2, 3sylancl 413 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 − 1)))
5 8m1e7 9134 . . . 4 (8 − 1) = 7
65oveq2i 5936 . . 3 (0...(8 − 1)) = (0...7)
74, 6eleqtrdi 2289 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...7))
8 neg1z 9377 . . . . . . . 8 -1 ∈ ℤ
9 z0even 12095 . . . . . . . . 9 2 ∥ 0
10 1pneg1e0 9120 . . . . . . . . . 10 (1 + -1) = 0
11 ax-1cn 7991 . . . . . . . . . . 11 1 ∈ ℂ
12 neg1cn 9114 . . . . . . . . . . 11 -1 ∈ ℂ
1311, 12addcomi 8189 . . . . . . . . . 10 (1 + -1) = (-1 + 1)
1410, 13eqtr3i 2219 . . . . . . . . 9 0 = (-1 + 1)
159, 14breqtri 4059 . . . . . . . 8 2 ∥ (-1 + 1)
16 noel 3455 . . . . . . . . . . 11 ¬ (𝐴 mod 8) ∈ ∅
1716pm2.21i 647 . . . . . . . . . 10 ((𝐴 mod 8) ∈ ∅ → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
18 neg1lt0 9117 . . . . . . . . . . 11 -1 < 0
19 0z 9356 . . . . . . . . . . . 12 0 ∈ ℤ
20 fzn 10136 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) = ∅))
2119, 8, 20mp2an 426 . . . . . . . . . . 11 (-1 < 0 ↔ (0...-1) = ∅)
2218, 21mpbi 145 . . . . . . . . . 10 (0...-1) = ∅
2317, 22eleq2s 2291 . . . . . . . . 9 ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2423a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
258, 15, 243pm3.2i 1177 . . . . . . 7 (-1 ∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
26 1e0p1 9517 . . . . . . 7 1 = (0 + 1)
27 ssun1 3327 . . . . . . . 8 {1, 7} ⊆ ({1, 7} ∪ {3, 5})
28 1ex 8040 . . . . . . . . 9 1 ∈ V
2928prid1 3729 . . . . . . . 8 1 ∈ {1, 7}
3027, 29sselii 3181 . . . . . . 7 1 ∈ ({1, 7} ∪ {3, 5})
3125, 14, 26, 30lgsdir2lem2 15378 . . . . . 6 (1 ∈ ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
32 df-2 9068 . . . . . 6 2 = (1 + 1)
33 df-3 9069 . . . . . 6 3 = (2 + 1)
34 ssun2 3328 . . . . . . 7 {3, 5} ⊆ ({1, 7} ∪ {3, 5})
35 3ex 9085 . . . . . . . 8 3 ∈ V
3635prid1 3729 . . . . . . 7 3 ∈ {3, 5}
3734, 36sselii 3181 . . . . . 6 3 ∈ ({1, 7} ∪ {3, 5})
3831, 32, 33, 37lgsdir2lem2 15378 . . . . 5 (3 ∈ ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
39 df-4 9070 . . . . 5 4 = (3 + 1)
40 df-5 9071 . . . . 5 5 = (4 + 1)
41 5nn 9174 . . . . . . . 8 5 ∈ ℕ
4241elexi 2775 . . . . . . 7 5 ∈ V
4342prid2 3730 . . . . . 6 5 ∈ {3, 5}
4434, 43sselii 3181 . . . . 5 5 ∈ ({1, 7} ∪ {3, 5})
4538, 39, 40, 44lgsdir2lem2 15378 . . . 4 (5 ∈ ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
46 df-6 9072 . . . 4 6 = (5 + 1)
47 df-7 9073 . . . 4 7 = (6 + 1)
48 7nn 9176 . . . . . . 7 7 ∈ ℕ
4948elexi 2775 . . . . . 6 7 ∈ V
5049prid2 3730 . . . . 5 7 ∈ {1, 7}
5127, 50sselii 3181 . . . 4 7 ∈ ({1, 7} ∪ {3, 5})
5245, 46, 47, 51lgsdir2lem2 15378 . . 3 (7 ∈ ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
5352simp3i 1010 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
547, 53mpd 13 1 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cun 3155  c0 3451  {cpr 3624   class class class wbr 4034  (class class class)co 5925  0cc0 7898  1c1 7899   + caddc 7901   < clt 8080  cmin 8216  -cneg 8217  cn 9009  2c2 9060  3c3 9061  4c4 9062  5c5 9063  6c6 9064  7c7 9065  8c8 9066  cz 9345  ...cfz 10102   mod cmo 10433  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fl 10379  df-mod 10434  df-dvds 11972
This theorem is referenced by:  lgsdir2  15382  2lgslem3  15450  2lgsoddprmlem3  15460
  Copyright terms: Public domain W3C validator