ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem3 GIF version

Theorem lgsdir2lem3 15271
Description: Lemma for lgsdir2 15274. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))

Proof of Theorem lgsdir2lem3
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → 𝐴 ∈ ℤ)
2 8nn 9158 . . . 4 8 ∈ ℕ
3 zmodfz 10438 . . . 4 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ (0...(8 − 1)))
41, 2, 3sylancl 413 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...(8 − 1)))
5 8m1e7 9115 . . . 4 (8 − 1) = 7
65oveq2i 5933 . . 3 (0...(8 − 1)) = (0...7)
74, 6eleqtrdi 2289 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ (0...7))
8 neg1z 9358 . . . . . . . 8 -1 ∈ ℤ
9 z0even 12076 . . . . . . . . 9 2 ∥ 0
10 1pneg1e0 9101 . . . . . . . . . 10 (1 + -1) = 0
11 ax-1cn 7972 . . . . . . . . . . 11 1 ∈ ℂ
12 neg1cn 9095 . . . . . . . . . . 11 -1 ∈ ℂ
1311, 12addcomi 8170 . . . . . . . . . 10 (1 + -1) = (-1 + 1)
1410, 13eqtr3i 2219 . . . . . . . . 9 0 = (-1 + 1)
159, 14breqtri 4058 . . . . . . . 8 2 ∥ (-1 + 1)
16 noel 3454 . . . . . . . . . . 11 ¬ (𝐴 mod 8) ∈ ∅
1716pm2.21i 647 . . . . . . . . . 10 ((𝐴 mod 8) ∈ ∅ → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
18 neg1lt0 9098 . . . . . . . . . . 11 -1 < 0
19 0z 9337 . . . . . . . . . . . 12 0 ∈ ℤ
20 fzn 10117 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (-1 < 0 ↔ (0...-1) = ∅))
2119, 8, 20mp2an 426 . . . . . . . . . . 11 (-1 < 0 ↔ (0...-1) = ∅)
2218, 21mpbi 145 . . . . . . . . . 10 (0...-1) = ∅
2317, 22eleq2s 2291 . . . . . . . . 9 ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2423a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
258, 15, 243pm3.2i 1177 . . . . . . 7 (-1 ∈ ℤ ∧ 2 ∥ (-1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...-1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
26 1e0p1 9498 . . . . . . 7 1 = (0 + 1)
27 ssun1 3326 . . . . . . . 8 {1, 7} ⊆ ({1, 7} ∪ {3, 5})
28 1ex 8021 . . . . . . . . 9 1 ∈ V
2928prid1 3728 . . . . . . . 8 1 ∈ {1, 7}
3027, 29sselii 3180 . . . . . . 7 1 ∈ ({1, 7} ∪ {3, 5})
3125, 14, 26, 30lgsdir2lem2 15270 . . . . . 6 (1 ∈ ℤ ∧ 2 ∥ (1 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...1) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
32 df-2 9049 . . . . . 6 2 = (1 + 1)
33 df-3 9050 . . . . . 6 3 = (2 + 1)
34 ssun2 3327 . . . . . . 7 {3, 5} ⊆ ({1, 7} ∪ {3, 5})
35 3ex 9066 . . . . . . . 8 3 ∈ V
3635prid1 3728 . . . . . . 7 3 ∈ {3, 5}
3734, 36sselii 3180 . . . . . 6 3 ∈ ({1, 7} ∪ {3, 5})
3831, 32, 33, 37lgsdir2lem2 15270 . . . . 5 (3 ∈ ℤ ∧ 2 ∥ (3 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...3) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
39 df-4 9051 . . . . 5 4 = (3 + 1)
40 df-5 9052 . . . . 5 5 = (4 + 1)
41 5nn 9155 . . . . . . . 8 5 ∈ ℕ
4241elexi 2775 . . . . . . 7 5 ∈ V
4342prid2 3729 . . . . . 6 5 ∈ {3, 5}
4434, 43sselii 3180 . . . . 5 5 ∈ ({1, 7} ∪ {3, 5})
4538, 39, 40, 44lgsdir2lem2 15270 . . . 4 (5 ∈ ℤ ∧ 2 ∥ (5 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...5) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
46 df-6 9053 . . . 4 6 = (5 + 1)
47 df-7 9054 . . . 4 7 = (6 + 1)
48 7nn 9157 . . . . . . 7 7 ∈ ℕ
4948elexi 2775 . . . . . 6 7 ∈ V
5049prid2 3729 . . . . 5 7 ∈ {1, 7}
5127, 50sselii 3180 . . . 4 7 ∈ ({1, 7} ∪ {3, 5})
5245, 46, 47, 51lgsdir2lem2 15270 . . 3 (7 ∈ ℤ ∧ 2 ∥ (7 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))))
5352simp3i 1010 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...7) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})))
547, 53mpd 13 1 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cun 3155  c0 3450  {cpr 3623   class class class wbr 4033  (class class class)co 5922  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cmin 8197  -cneg 8198  cn 8990  2c2 9041  3c3 9042  4c4 9043  5c5 9044  6c6 9045  7c7 9046  8c8 9047  cz 9326  ...cfz 10083   mod cmo 10414  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-dvds 11953
This theorem is referenced by:  lgsdir2  15274  2lgslem3  15342  2lgsoddprmlem3  15352
  Copyright terms: Public domain W3C validator