![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 985 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 943 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 945 |
This theorem is referenced by: simpl3l 1017 simpr3l 1023 simp13l 1077 simp23l 1083 simp33l 1089 issod 4199 tfisi 4459 tfrlem5 6162 tfrlemibxssdm 6175 tfr1onlembxssdm 6191 tfrcllembxssdm 6204 ecopovtrn 6477 ecopovtrng 6480 addassnqg 7131 ltsonq 7147 ltanqg 7149 ltmnqg 7150 addassnq0 7211 mulasssrg 7494 distrsrg 7495 lttrsr 7498 ltsosr 7500 ltasrg 7506 mulextsr1lem 7515 mulextsr1 7516 axmulass 7601 axdistr 7602 lemul1 8266 reapmul1lem 8267 reapmul1 8268 mulcanap 8332 mulcanap2 8333 divassap 8356 divdirap 8363 div11ap 8366 muldivdirap 8373 divcanap5 8380 apmul1 8454 apmul2 8455 ltdiv1 8529 ltmuldiv 8535 ledivmul 8538 lemuldiv 8542 ltdiv2 8548 lediv2 8552 ltdiv23 8553 lediv23 8554 xaddass2 9539 xlt2add 9549 modqdi 10051 expaddzap 10223 expmulzap 10225 leisorel 10466 resqrtcl 10686 xrbdtri 10930 dvdscmulr 11363 dvdsmulcr 11364 dvdsadd2b 11381 dvdsgcd 11539 rpexp12i 11672 psmetlecl 12316 xmetlecl 12349 |
Copyright terms: Public domain | W3C validator |