Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 1015 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simpl3l 1047 simpr3l 1053 simp13l 1107 simp23l 1113 simp33l 1119 issod 4304 tfisi 4571 tfrlem5 6293 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 ecopovtrn 6610 ecopovtrng 6613 addassnqg 7344 ltsonq 7360 ltanqg 7362 ltmnqg 7363 addassnq0 7424 mulasssrg 7720 distrsrg 7721 lttrsr 7724 ltsosr 7726 ltasrg 7732 mulextsr1lem 7742 mulextsr1 7743 axmulass 7835 axdistr 7836 lemul1 8512 reapmul1lem 8513 reapmul1 8514 mulcanap 8583 mulcanap2 8584 divassap 8607 divdirap 8614 div11ap 8617 muldivdirap 8624 divcanap5 8631 apmul1 8705 apmul2 8706 ltdiv1 8784 ltmuldiv 8790 ledivmul 8793 lemuldiv 8797 ltdiv2 8803 lediv2 8807 ltdiv23 8808 lediv23 8809 xaddass2 9827 xlt2add 9837 modqdi 10348 expaddzap 10520 expmulzap 10522 leisorel 10772 resqrtcl 10993 xrbdtri 11239 dvdscmulr 11782 dvdsmulcr 11783 dvdsadd2b 11802 dvdsgcd 11967 rpexp12i 12109 pythagtriplem3 12221 pcpremul 12247 pceu 12249 pcqmul 12257 pcqdiv 12261 psmetlecl 13128 xmetlecl 13161 |
Copyright terms: Public domain | W3C validator |