![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl3l 1054 simpr3l 1060 simp13l 1114 simp23l 1120 simp33l 1126 issod 4350 tfisi 4619 tfrlem5 6367 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 ecopovtrn 6686 ecopovtrng 6689 dftap2 7311 addassnqg 7442 ltsonq 7458 ltanqg 7460 ltmnqg 7461 addassnq0 7522 mulasssrg 7818 distrsrg 7819 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1lem 7840 mulextsr1 7841 axmulass 7933 axdistr 7934 lemul1 8612 reapmul1lem 8613 reapmul1 8614 mulcanap 8684 mulcanap2 8685 divassap 8709 divdirap 8716 div11ap 8719 muldivdirap 8726 divcanap5 8733 apmul1 8807 apmul2 8808 ltdiv1 8887 ltmuldiv 8893 ledivmul 8896 lemuldiv 8900 ltdiv2 8906 lediv2 8910 ltdiv23 8911 lediv23 8912 xaddass2 9936 xlt2add 9946 modqdi 10463 expaddzap 10654 expmulzap 10656 leisorel 10908 resqrtcl 11173 xrbdtri 11419 dvdscmulr 11963 dvdsmulcr 11964 dvdsadd2b 11983 dvdsgcd 12149 rpexp12i 12293 pythagtriplem3 12405 pcpremul 12431 pceu 12433 pcqmul 12441 pcqdiv 12445 f1ocpbllem 12893 ercpbl 12914 erlecpbl 12915 cmn4 13375 ablsub4 13383 abladdsub4 13384 lidlsubcl 13983 psmetlecl 14502 xmetlecl 14535 |
Copyright terms: Public domain | W3C validator |