| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant3 1044 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl3l 1076 simpr3l 1082 simp13l 1136 simp23l 1142 simp33l 1148 issod 4410 tfisi 4679 tfrlem5 6466 tfrlemibxssdm 6479 tfr1onlembxssdm 6495 tfrcllembxssdm 6508 ecopovtrn 6787 ecopovtrng 6790 dftap2 7445 addassnqg 7577 ltsonq 7593 ltanqg 7595 ltmnqg 7596 addassnq0 7657 mulasssrg 7953 distrsrg 7954 lttrsr 7957 ltsosr 7959 ltasrg 7965 mulextsr1lem 7975 mulextsr1 7976 axmulass 8068 axdistr 8069 lemul1 8748 reapmul1lem 8749 reapmul1 8750 mulcanap 8820 mulcanap2 8821 divassap 8845 divdirap 8852 div11ap 8855 muldivdirap 8862 divcanap5 8869 apmul1 8943 apmul2 8944 ltdiv1 9023 ltmuldiv 9029 ledivmul 9032 lemuldiv 9036 ltdiv2 9042 lediv2 9046 ltdiv23 9047 lediv23 9048 xaddass2 10074 xlt2add 10084 modqdi 10622 expaddzap 10813 expmulzap 10815 leisorel 11067 resqrtcl 11548 xrbdtri 11795 dvdscmulr 12339 dvdsmulcr 12340 dvdsadd2b 12359 dvdsgcd 12541 rpexp12i 12685 pythagtriplem3 12798 pcpremul 12824 pceu 12826 pcqmul 12834 pcqdiv 12838 f1ocpbllem 13351 ercpbl 13372 erlecpbl 13373 cmn4 13850 ablsub4 13858 abladdsub4 13859 lidlsubcl 14459 psmetlecl 15016 xmetlecl 15049 wlkl1loop 16079 |
| Copyright terms: Public domain | W3C validator |