| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant3 1023 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3l 1055 simpr3l 1061 simp13l 1115 simp23l 1121 simp33l 1127 issod 4370 tfisi 4639 tfrlem5 6407 tfrlemibxssdm 6420 tfr1onlembxssdm 6436 tfrcllembxssdm 6449 ecopovtrn 6726 ecopovtrng 6729 dftap2 7370 addassnqg 7502 ltsonq 7518 ltanqg 7520 ltmnqg 7521 addassnq0 7582 mulasssrg 7878 distrsrg 7879 lttrsr 7882 ltsosr 7884 ltasrg 7890 mulextsr1lem 7900 mulextsr1 7901 axmulass 7993 axdistr 7994 lemul1 8673 reapmul1lem 8674 reapmul1 8675 mulcanap 8745 mulcanap2 8746 divassap 8770 divdirap 8777 div11ap 8780 muldivdirap 8787 divcanap5 8794 apmul1 8868 apmul2 8869 ltdiv1 8948 ltmuldiv 8954 ledivmul 8957 lemuldiv 8961 ltdiv2 8967 lediv2 8971 ltdiv23 8972 lediv23 8973 xaddass2 9999 xlt2add 10009 modqdi 10544 expaddzap 10735 expmulzap 10737 leisorel 10989 resqrtcl 11384 xrbdtri 11631 dvdscmulr 12175 dvdsmulcr 12176 dvdsadd2b 12195 dvdsgcd 12377 rpexp12i 12521 pythagtriplem3 12634 pcpremul 12660 pceu 12662 pcqmul 12670 pcqdiv 12674 f1ocpbllem 13186 ercpbl 13207 erlecpbl 13208 cmn4 13685 ablsub4 13693 abladdsub4 13694 lidlsubcl 14293 psmetlecl 14850 xmetlecl 14883 |
| Copyright terms: Public domain | W3C validator |