Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 1010 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl3l 1042 simpr3l 1048 simp13l 1102 simp23l 1108 simp33l 1114 issod 4296 tfisi 4563 tfrlem5 6278 tfrlemibxssdm 6291 tfr1onlembxssdm 6307 tfrcllembxssdm 6320 ecopovtrn 6594 ecopovtrng 6597 addassnqg 7319 ltsonq 7335 ltanqg 7337 ltmnqg 7338 addassnq0 7399 mulasssrg 7695 distrsrg 7696 lttrsr 7699 ltsosr 7701 ltasrg 7707 mulextsr1lem 7717 mulextsr1 7718 axmulass 7810 axdistr 7811 lemul1 8487 reapmul1lem 8488 reapmul1 8489 mulcanap 8558 mulcanap2 8559 divassap 8582 divdirap 8589 div11ap 8592 muldivdirap 8599 divcanap5 8606 apmul1 8680 apmul2 8681 ltdiv1 8759 ltmuldiv 8765 ledivmul 8768 lemuldiv 8772 ltdiv2 8778 lediv2 8782 ltdiv23 8783 lediv23 8784 xaddass2 9802 xlt2add 9812 modqdi 10323 expaddzap 10495 expmulzap 10497 leisorel 10746 resqrtcl 10967 xrbdtri 11213 dvdscmulr 11756 dvdsmulcr 11757 dvdsadd2b 11776 dvdsgcd 11941 rpexp12i 12083 pythagtriplem3 12195 pcpremul 12221 pceu 12223 pcqmul 12231 pcqdiv 12235 psmetlecl 12934 xmetlecl 12967 |
Copyright terms: Public domain | W3C validator |