![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl3l 1054 simpr3l 1060 simp13l 1114 simp23l 1120 simp33l 1126 issod 4351 tfisi 4620 tfrlem5 6369 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 ecopovtrn 6688 ecopovtrng 6691 dftap2 7313 addassnqg 7444 ltsonq 7460 ltanqg 7462 ltmnqg 7463 addassnq0 7524 mulasssrg 7820 distrsrg 7821 lttrsr 7824 ltsosr 7826 ltasrg 7832 mulextsr1lem 7842 mulextsr1 7843 axmulass 7935 axdistr 7936 lemul1 8614 reapmul1lem 8615 reapmul1 8616 mulcanap 8686 mulcanap2 8687 divassap 8711 divdirap 8718 div11ap 8721 muldivdirap 8728 divcanap5 8735 apmul1 8809 apmul2 8810 ltdiv1 8889 ltmuldiv 8895 ledivmul 8898 lemuldiv 8902 ltdiv2 8908 lediv2 8912 ltdiv23 8913 lediv23 8914 xaddass2 9939 xlt2add 9949 modqdi 10466 expaddzap 10657 expmulzap 10659 leisorel 10911 resqrtcl 11176 xrbdtri 11422 dvdscmulr 11966 dvdsmulcr 11967 dvdsadd2b 11986 dvdsgcd 12152 rpexp12i 12296 pythagtriplem3 12408 pcpremul 12434 pceu 12436 pcqmul 12444 pcqdiv 12448 f1ocpbllem 12896 ercpbl 12917 erlecpbl 12918 cmn4 13378 ablsub4 13386 abladdsub4 13387 lidlsubcl 13986 psmetlecl 14513 xmetlecl 14546 |
Copyright terms: Public domain | W3C validator |