| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl3l 1054 simpr3l 1060 simp13l 1114 simp23l 1120 simp33l 1126 issod 4355 tfisi 4624 tfrlem5 6381 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 ecopovtrn 6700 ecopovtrng 6703 dftap2 7336 addassnqg 7468 ltsonq 7484 ltanqg 7486 ltmnqg 7487 addassnq0 7548 mulasssrg 7844 distrsrg 7845 lttrsr 7848 ltsosr 7850 ltasrg 7856 mulextsr1lem 7866 mulextsr1 7867 axmulass 7959 axdistr 7960 lemul1 8639 reapmul1lem 8640 reapmul1 8641 mulcanap 8711 mulcanap2 8712 divassap 8736 divdirap 8743 div11ap 8746 muldivdirap 8753 divcanap5 8760 apmul1 8834 apmul2 8835 ltdiv1 8914 ltmuldiv 8920 ledivmul 8923 lemuldiv 8927 ltdiv2 8933 lediv2 8937 ltdiv23 8938 lediv23 8939 xaddass2 9964 xlt2add 9974 modqdi 10503 expaddzap 10694 expmulzap 10696 leisorel 10948 resqrtcl 11213 xrbdtri 11460 dvdscmulr 12004 dvdsmulcr 12005 dvdsadd2b 12024 dvdsgcd 12206 rpexp12i 12350 pythagtriplem3 12463 pcpremul 12489 pceu 12491 pcqmul 12499 pcqdiv 12503 f1ocpbllem 13014 ercpbl 13035 erlecpbl 13036 cmn4 13513 ablsub4 13521 abladdsub4 13522 lidlsubcl 14121 psmetlecl 14656 xmetlecl 14689 |
| Copyright terms: Public domain | W3C validator |