Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant3 1005 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: simpl3l 1037 simpr3l 1043 simp13l 1097 simp23l 1103 simp33l 1109 issod 4274 tfisi 4540 tfrlem5 6251 tfrlemibxssdm 6264 tfr1onlembxssdm 6280 tfrcllembxssdm 6293 ecopovtrn 6566 ecopovtrng 6569 addassnqg 7281 ltsonq 7297 ltanqg 7299 ltmnqg 7300 addassnq0 7361 mulasssrg 7657 distrsrg 7658 lttrsr 7661 ltsosr 7663 ltasrg 7669 mulextsr1lem 7679 mulextsr1 7680 axmulass 7772 axdistr 7773 lemul1 8447 reapmul1lem 8448 reapmul1 8449 mulcanap 8518 mulcanap2 8519 divassap 8542 divdirap 8549 div11ap 8552 muldivdirap 8559 divcanap5 8566 apmul1 8640 apmul2 8641 ltdiv1 8718 ltmuldiv 8724 ledivmul 8727 lemuldiv 8731 ltdiv2 8737 lediv2 8741 ltdiv23 8742 lediv23 8743 xaddass2 9752 xlt2add 9762 modqdi 10269 expaddzap 10441 expmulzap 10443 leisorel 10685 resqrtcl 10906 xrbdtri 11150 dvdscmulr 11689 dvdsmulcr 11690 dvdsadd2b 11707 dvdsgcd 11868 rpexp12i 12001 psmetlecl 12681 xmetlecl 12714 |
Copyright terms: Public domain | W3C validator |