| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl3l 1054 simpr3l 1060 simp13l 1114 simp23l 1120 simp33l 1126 issod 4355 tfisi 4624 tfrlem5 6381 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 ecopovtrn 6700 ecopovtrng 6703 dftap2 7334 addassnqg 7466 ltsonq 7482 ltanqg 7484 ltmnqg 7485 addassnq0 7546 mulasssrg 7842 distrsrg 7843 lttrsr 7846 ltsosr 7848 ltasrg 7854 mulextsr1lem 7864 mulextsr1 7865 axmulass 7957 axdistr 7958 lemul1 8637 reapmul1lem 8638 reapmul1 8639 mulcanap 8709 mulcanap2 8710 divassap 8734 divdirap 8741 div11ap 8744 muldivdirap 8751 divcanap5 8758 apmul1 8832 apmul2 8833 ltdiv1 8912 ltmuldiv 8918 ledivmul 8921 lemuldiv 8925 ltdiv2 8931 lediv2 8935 ltdiv23 8936 lediv23 8937 xaddass2 9962 xlt2add 9972 modqdi 10501 expaddzap 10692 expmulzap 10694 leisorel 10946 resqrtcl 11211 xrbdtri 11458 dvdscmulr 12002 dvdsmulcr 12003 dvdsadd2b 12022 dvdsgcd 12204 rpexp12i 12348 pythagtriplem3 12461 pcpremul 12487 pceu 12489 pcqmul 12497 pcqdiv 12501 f1ocpbllem 13012 ercpbl 13033 erlecpbl 13034 cmn4 13511 ablsub4 13519 abladdsub4 13520 lidlsubcl 14119 psmetlecl 14654 xmetlecl 14687 |
| Copyright terms: Public domain | W3C validator |