| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | 3ad2ant3 1025 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simpl3l 1057 simpr3l 1063 simp13l 1117 simp23l 1123 simp33l 1129 issod 4387 tfisi 4656 tfrlem5 6430 tfrlemibxssdm 6443 tfr1onlembxssdm 6459 tfrcllembxssdm 6472 ecopovtrn 6749 ecopovtrng 6752 dftap2 7405 addassnqg 7537 ltsonq 7553 ltanqg 7555 ltmnqg 7556 addassnq0 7617 mulasssrg 7913 distrsrg 7914 lttrsr 7917 ltsosr 7919 ltasrg 7925 mulextsr1lem 7935 mulextsr1 7936 axmulass 8028 axdistr 8029 lemul1 8708 reapmul1lem 8709 reapmul1 8710 mulcanap 8780 mulcanap2 8781 divassap 8805 divdirap 8812 div11ap 8815 muldivdirap 8822 divcanap5 8829 apmul1 8903 apmul2 8904 ltdiv1 8983 ltmuldiv 8989 ledivmul 8992 lemuldiv 8996 ltdiv2 9002 lediv2 9006 ltdiv23 9007 lediv23 9008 xaddass2 10034 xlt2add 10044 modqdi 10581 expaddzap 10772 expmulzap 10774 leisorel 11026 resqrtcl 11506 xrbdtri 11753 dvdscmulr 12297 dvdsmulcr 12298 dvdsadd2b 12317 dvdsgcd 12499 rpexp12i 12643 pythagtriplem3 12756 pcpremul 12782 pceu 12784 pcqmul 12792 pcqdiv 12796 f1ocpbllem 13309 ercpbl 13330 erlecpbl 13331 cmn4 13808 ablsub4 13816 abladdsub4 13817 lidlsubcl 14416 psmetlecl 14973 xmetlecl 15006 |
| Copyright terms: Public domain | W3C validator |