ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 GIF version

Theorem ltmul1 8378
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))

Proof of Theorem ltmul1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8377 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
21ex 114 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 → (𝐴 · 𝐶) < (𝐵 · 𝐶)))
3 recexgt0 8366 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
433ad2ant3 1005 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
5 simpl1 985 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℝ)
6 simpl3l 1037 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℝ)
75, 6remulcld 7820 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐴 · 𝐶) ∈ ℝ)
8 simpl2 986 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℝ)
98, 6remulcld 7820 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐵 · 𝐶) ∈ ℝ)
10 simprl 521 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℝ)
11 simprrl 529 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 0 < 𝑥)
1210, 11jca 304 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
137, 9, 123jca 1162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)))
14 ltmul1a 8377 . . . . . . . 8 ((((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
1513, 14sylan 281 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
165recnd 7818 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℂ)
1716adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 ∈ ℂ)
186recnd 7818 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℂ)
1918adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐶 ∈ ℂ)
2010recnd 7818 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℂ)
2120adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝑥 ∈ ℂ)
2217, 19, 21mulassd 7813 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) = (𝐴 · (𝐶 · 𝑥)))
238recnd 7818 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℂ)
2423adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐵 ∈ ℂ)
2524, 19, 21mulassd 7813 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2615, 22, 253brtr3d 3967 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) < (𝐵 · (𝐶 · 𝑥)))
27 simprrr 530 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐶 · 𝑥) = 1)
2827adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐶 · 𝑥) = 1)
2928oveq2d 5798 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) = (𝐴 · 1))
3028oveq2d 5798 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · (𝐶 · 𝑥)) = (𝐵 · 1))
3126, 29, 303brtr3d 3967 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) < (𝐵 · 1))
3217mulid1d 7807 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) = 𝐴)
3324mulid1d 7807 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · 1) = 𝐵)
3431, 32, 333brtr3d 3967 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 < 𝐵)
3534ex 114 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
364, 35rexlimddv 2557 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
372, 36impbid 128 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wrex 2418   class class class wbr 3937  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645   · cmul 7649   < clt 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960
This theorem is referenced by:  lemul1  8379  reapmul1lem  8380  ltmul2  8638  ltdiv1  8650  ltdiv23  8674  recp1lt1  8681  ltmul1i  8702  ltmul1d  9555  mertenslemi1  11336  flodddiv4t2lthalf  11670  qnumgt0  11912  tangtx  12967
  Copyright terms: Public domain W3C validator