ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 GIF version

Theorem ltmul1 8727
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))

Proof of Theorem ltmul1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8726 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
21ex 115 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 → (𝐴 · 𝐶) < (𝐵 · 𝐶)))
3 recexgt0 8715 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
433ad2ant3 1044 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
5 simpl1 1024 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℝ)
6 simpl3l 1076 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℝ)
75, 6remulcld 8165 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐴 · 𝐶) ∈ ℝ)
8 simpl2 1025 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℝ)
98, 6remulcld 8165 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐵 · 𝐶) ∈ ℝ)
10 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℝ)
11 simprrl 539 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 0 < 𝑥)
1210, 11jca 306 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
137, 9, 123jca 1201 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)))
14 ltmul1a 8726 . . . . . . . 8 ((((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
1513, 14sylan 283 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
165recnd 8163 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℂ)
1716adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 ∈ ℂ)
186recnd 8163 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℂ)
1918adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐶 ∈ ℂ)
2010recnd 8163 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℂ)
2120adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝑥 ∈ ℂ)
2217, 19, 21mulassd 8158 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) = (𝐴 · (𝐶 · 𝑥)))
238recnd 8163 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℂ)
2423adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐵 ∈ ℂ)
2524, 19, 21mulassd 8158 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2615, 22, 253brtr3d 4113 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) < (𝐵 · (𝐶 · 𝑥)))
27 simprrr 540 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐶 · 𝑥) = 1)
2827adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐶 · 𝑥) = 1)
2928oveq2d 6010 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) = (𝐴 · 1))
3028oveq2d 6010 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · (𝐶 · 𝑥)) = (𝐵 · 1))
3126, 29, 303brtr3d 4113 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) < (𝐵 · 1))
3217mulridd 8151 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) = 𝐴)
3324mulridd 8151 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · 1) = 𝐵)
3431, 32, 333brtr3d 4113 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 < 𝐵)
3534ex 115 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
364, 35rexlimddv 2653 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
372, 36impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   · cmul 7992   < clt 8169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltadd 8103  ax-pre-mulgt0 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-sub 8307  df-neg 8308
This theorem is referenced by:  lemul1  8728  reapmul1lem  8729  ltmul2  8991  ltdiv1  9003  ltdiv23  9027  recp1lt1  9034  ltmul1i  9055  ltmul1d  9922  mertenslemi1  12032  flodddiv4t2lthalf  12436  qnumgt0  12706  4sqlem12  12911  tangtx  15497  lgsquadlem1  15741  lgsquadlem2  15742
  Copyright terms: Public domain W3C validator