ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 GIF version

Theorem ltmul1 8490
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))

Proof of Theorem ltmul1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 8489 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
21ex 114 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 → (𝐴 · 𝐶) < (𝐵 · 𝐶)))
3 recexgt0 8478 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
433ad2ant3 1010 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
5 simpl1 990 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℝ)
6 simpl3l 1042 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℝ)
75, 6remulcld 7929 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐴 · 𝐶) ∈ ℝ)
8 simpl2 991 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℝ)
98, 6remulcld 7929 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐵 · 𝐶) ∈ ℝ)
10 simprl 521 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℝ)
11 simprrl 529 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 0 < 𝑥)
1210, 11jca 304 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
137, 9, 123jca 1167 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)))
14 ltmul1a 8489 . . . . . . . 8 ((((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
1513, 14sylan 281 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
165recnd 7927 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℂ)
1716adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 ∈ ℂ)
186recnd 7927 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℂ)
1918adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐶 ∈ ℂ)
2010recnd 7927 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℂ)
2120adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝑥 ∈ ℂ)
2217, 19, 21mulassd 7922 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) = (𝐴 · (𝐶 · 𝑥)))
238recnd 7927 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℂ)
2423adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐵 ∈ ℂ)
2524, 19, 21mulassd 7922 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2615, 22, 253brtr3d 4013 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) < (𝐵 · (𝐶 · 𝑥)))
27 simprrr 530 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐶 · 𝑥) = 1)
2827adantr 274 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐶 · 𝑥) = 1)
2928oveq2d 5858 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) = (𝐴 · 1))
3028oveq2d 5858 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · (𝐶 · 𝑥)) = (𝐵 · 1))
3126, 29, 303brtr3d 4013 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) < (𝐵 · 1))
3217mulid1d 7916 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) = 𝐴)
3324mulid1d 7916 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · 1) = 𝐵)
3431, 32, 333brtr3d 4013 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 < 𝐵)
3534ex 114 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
364, 35rexlimddv 2588 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
372, 36impbid 128 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   · cmul 7758   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072
This theorem is referenced by:  lemul1  8491  reapmul1lem  8492  ltmul2  8751  ltdiv1  8763  ltdiv23  8787  recp1lt1  8794  ltmul1i  8815  ltmul1d  9674  mertenslemi1  11476  flodddiv4t2lthalf  11874  qnumgt0  12130  tangtx  13399
  Copyright terms: Public domain W3C validator