| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsaddre2b | GIF version | ||
| Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12337 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| dvdsaddre2b | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 12289 | . . . 4 ⊢ (𝐴 ∥ 𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝐴 ∥ 𝐵 → 𝐵 ∈ ℤ) |
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 → 𝐵 ∈ ℤ)) |
| 4 | simpl3l 1076 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ) | |
| 5 | 4 | zcnd 9558 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℂ) |
| 6 | simpl2 1025 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℝ) | |
| 7 | 6 | recnd 8163 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℂ) |
| 8 | 5, 7 | pncan2d 8447 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) − 𝐶) = 𝐵) |
| 9 | dvdszrcl 12289 | . . . . . . 7 ⊢ (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ)) | |
| 10 | 9 | simprd 114 | . . . . . 6 ⊢ (𝐴 ∥ (𝐶 + 𝐵) → (𝐶 + 𝐵) ∈ ℤ) |
| 11 | 10 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ) |
| 12 | 11, 4 | zsubcld 9562 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) − 𝐶) ∈ ℤ) |
| 13 | 8, 12 | eqeltrrd 2307 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ) |
| 14 | 13 | ex 115 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐵 ∈ ℤ)) |
| 15 | dvdsadd2b 12337 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | |
| 16 | 15 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐵 ∈ ℝ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))) |
| 17 | 16 | 3exp 1226 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶) → (𝐵 ∈ ℝ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))))) |
| 18 | 17 | com24 87 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶) → (𝐵 ∈ ℤ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))))) |
| 19 | 18 | 3imp 1217 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐵 ∈ ℤ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))) |
| 20 | 3, 14, 19 | pm5.21ndd 710 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 + caddc 7990 − cmin 8305 ℤcz 9434 ∥ cdvds 12284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-dvds 12285 |
| This theorem is referenced by: 2lgsoddprmlem2 15770 |
| Copyright terms: Public domain | W3C validator |