![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsaddre2b | GIF version |
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 11847 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
dvdsaddre2b | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 11799 | . . . 4 ⊢ (𝐴 ∥ 𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) | |
2 | 1 | simprd 114 | . . 3 ⊢ (𝐴 ∥ 𝐵 → 𝐵 ∈ ℤ) |
3 | 2 | a1i 9 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 → 𝐵 ∈ ℤ)) |
4 | simpl3l 1052 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ) | |
5 | 4 | zcnd 9376 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℂ) |
6 | simpl2 1001 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℝ) | |
7 | 6 | recnd 7986 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℂ) |
8 | 5, 7 | pncan2d 8270 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) − 𝐶) = 𝐵) |
9 | dvdszrcl 11799 | . . . . . . 7 ⊢ (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ)) | |
10 | 9 | simprd 114 | . . . . . 6 ⊢ (𝐴 ∥ (𝐶 + 𝐵) → (𝐶 + 𝐵) ∈ ℤ) |
11 | 10 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ) |
12 | 11, 4 | zsubcld 9380 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) − 𝐶) ∈ ℤ) |
13 | 8, 12 | eqeltrrd 2255 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ) |
14 | 13 | ex 115 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐵 ∈ ℤ)) |
15 | dvdsadd2b 11847 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | |
16 | 15 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐵 ∈ ℝ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))) |
17 | 16 | 3exp 1202 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶) → (𝐵 ∈ ℝ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))))) |
18 | 17 | com24 87 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶) → (𝐵 ∈ ℤ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))))) |
19 | 18 | 3imp 1193 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐵 ∈ ℤ → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵)))) |
20 | 3, 14, 19 | pm5.21ndd 705 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4004 (class class class)co 5875 ℝcr 7810 + caddc 7814 − cmin 8128 ℤcz 9253 ∥ cdvds 11794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-dvds 11795 |
This theorem is referenced by: 2lgsoddprmlem2 14457 |
Copyright terms: Public domain | W3C validator |