ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm2 GIF version

Theorem smodm2 6348
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 6344 . 2 (Smo 𝐹 → Ord dom 𝐹)
2 fndm 5353 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 ordeq 4403 . . . 4 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
42, 3syl 14 . . 3 (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
54biimpa 296 . 2 ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴)
61, 5sylan2 286 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  Ord word 4393  dom cdm 4659   Fn wfn 5249  Smo wsmo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-fn 5257  df-smo 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator