ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm2 GIF version

Theorem smodm2 6263
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 6259 . 2 (Smo 𝐹 → Ord dom 𝐹)
2 fndm 5287 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 ordeq 4350 . . . 4 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
42, 3syl 14 . . 3 (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
54biimpa 294 . 2 ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴)
61, 5sylan2 284 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  Ord word 4340  dom cdm 4604   Fn wfn 5183  Smo wsmo 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-fn 5191  df-smo 6254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator