| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smodm2 | GIF version | ||
| Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 6443 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
| 2 | fndm 5420 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | ordeq 4463 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 5 | 4 | biimpa 296 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
| 6 | 1, 5 | sylan2 286 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 Ord word 4453 dom cdm 4719 Fn wfn 5313 Smo wsmo 6437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-fn 5321 df-smo 6438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |